// Oh boy, why am I about to do this.... #ifndef NETWORK_H #define NETWORK_H #include "image.h" #include "layer.h" #include "data.h" typedef enum { CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM } learning_rate_policy; typedef struct network{ float *workspace; int n; int batch; int *seen; float epoch; int subdivisions; float momentum; float decay; layer *layers; int outputs; float *output; learning_rate_policy policy; float learning_rate; float gamma; float scale; float power; int time_steps; int step; int max_batches; float *scales; int *steps; int num_steps; int burn_in; int inputs; int h, w, c; int max_crop; int min_crop; float angle; float aspect; float exposure; float saturation; float hue; int gpu_index; #ifdef GPU float **input_gpu; float **truth_gpu; #endif } network; typedef struct network_state { float *truth; float *input; float *delta; float *workspace; int train; int index; network net; } network_state; #ifdef GPU float train_networks(network *nets, int n, data d, int interval); void sync_nets(network *nets, int n, int interval); float train_network_datum_gpu(network net, float *x, float *y); float *network_predict_gpu(network net, float *input); float * get_network_output_gpu_layer(network net, int i); float * get_network_delta_gpu_layer(network net, int i); float *get_network_output_gpu(network net); void forward_network_gpu(network net, network_state state); void backward_network_gpu(network net, network_state state); void update_network_gpu(network net); #endif float get_current_rate(network net); int get_current_batch(network net); void free_network(network net); void compare_networks(network n1, network n2, data d); char *get_layer_string(LAYER_TYPE a); network make_network(int n); void forward_network(network net, network_state state); void backward_network(network net, network_state state); void update_network(network net); float train_network(network net, data d); float train_network_batch(network net, data d, int n); float train_network_sgd(network net, data d, int n); float train_network_datum(network net, float *x, float *y); matrix network_predict_data(network net, data test); float *network_predict(network net, float *input); float network_accuracy(network net, data d); float *network_accuracies(network net, data d, int n); float network_accuracy_multi(network net, data d, int n); void top_predictions(network net, int n, int *index); float *get_network_output(network net); float *get_network_output_layer(network net, int i); float *get_network_delta_layer(network net, int i); float *get_network_delta(network net); int get_network_output_size_layer(network net, int i); int get_network_output_size(network net); image get_network_image(network net); image get_network_image_layer(network net, int i); int get_predicted_class_network(network net); void print_network(network net); void visualize_network(network net); int resize_network(network *net, int w, int h); void set_batch_network(network *net, int b); int get_network_input_size(network net); float get_network_cost(network net); int get_network_nuisance(network net); int get_network_background(network net); #endif