#include #include #include #include "blas.h" #include "parser.h" #include "assert.h" #include "activations.h" #include "crop_layer.h" #include "cost_layer.h" #include "convolutional_layer.h" #include "activation_layer.h" #include "normalization_layer.h" #include "batchnorm_layer.h" #include "deconvolutional_layer.h" #include "connected_layer.h" #include "rnn_layer.h" #include "gru_layer.h" #include "crnn_layer.h" #include "maxpool_layer.h" #include "reorg_layer.h" #include "softmax_layer.h" #include "dropout_layer.h" #include "detection_layer.h" #include "region_layer.h" #include "avgpool_layer.h" #include "local_layer.h" #include "route_layer.h" #include "shortcut_layer.h" #include "list.h" #include "option_list.h" #include "utils.h" typedef struct{ char *type; list *options; }section; int is_network(section *s); int is_convolutional(section *s); int is_activation(section *s); int is_local(section *s); int is_deconvolutional(section *s); int is_connected(section *s); int is_rnn(section *s); int is_gru(section *s); int is_crnn(section *s); int is_maxpool(section *s); int is_reorg(section *s); int is_avgpool(section *s); int is_dropout(section *s); int is_softmax(section *s); int is_normalization(section *s); int is_batchnorm(section *s); int is_crop(section *s); int is_shortcut(section *s); int is_cost(section *s); int is_detection(section *s); int is_region(section *s); int is_route(section *s); list *read_cfg(char *filename); void free_section(section *s) { free(s->type); node *n = s->options->front; while(n){ kvp *pair = (kvp *)n->val; free(pair->key); free(pair); node *next = n->next; free(n); n = next; } free(s->options); free(s); } void parse_data(char *data, float *a, int n) { int i; if(!data) return; char *curr = data; char *next = data; int done = 0; for(i = 0; i < n && !done; ++i){ while(*++next !='\0' && *next != ','); if(*next == '\0') done = 1; *next = '\0'; sscanf(curr, "%g", &a[i]); curr = next+1; } } typedef struct size_params{ int batch; int inputs; int h; int w; int c; int index; int time_steps; } size_params; deconvolutional_layer parse_deconvolutional(list *options, size_params params) { int n = option_find_int(options, "filters",1); int size = option_find_int(options, "size",1); int stride = option_find_int(options, "stride",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before deconvolutional layer must output image."); deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation); return layer; } local_layer parse_local(list *options, size_params params) { int n = option_find_int(options, "filters",1); int size = option_find_int(options, "size",1); int stride = option_find_int(options, "stride",1); int pad = option_find_int(options, "pad",0); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before local layer must output image."); local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation); return layer; } convolutional_layer parse_convolutional(list *options, size_params params) { int n = option_find_int(options, "filters",1); int size = option_find_int(options, "size",1); int stride = option_find_int(options, "stride",1); int pad = option_find_int_quiet(options, "pad",0); int padding = option_find_int_quiet(options, "padding",0); if(pad) padding = size/2; char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before convolutional layer must output image."); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); int binary = option_find_int_quiet(options, "binary", 0); int xnor = option_find_int_quiet(options, "xnor", 0); convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor); layer.flipped = option_find_int_quiet(options, "flipped", 0); layer.dot = option_find_float_quiet(options, "dot", 0); return layer; } layer parse_crnn(list *options, size_params params) { int output_filters = option_find_int(options, "output_filters",1); int hidden_filters = option_find_int(options, "hidden_filters",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize); l.shortcut = option_find_int_quiet(options, "shortcut", 0); return l; } layer parse_rnn(list *options, size_params params) { int output = option_find_int(options, "output",1); int hidden = option_find_int(options, "hidden",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); int logistic = option_find_int_quiet(options, "logistic", 0); layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic); l.shortcut = option_find_int_quiet(options, "shortcut", 0); return l; } layer parse_gru(list *options, size_params params) { int output = option_find_int(options, "output",1); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize); return l; } connected_layer parse_connected(list *options, size_params params) { int output = option_find_int(options, "output",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize); return layer; } softmax_layer parse_softmax(list *options, size_params params) { int groups = option_find_int_quiet(options, "groups",1); softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); layer.temperature = option_find_float_quiet(options, "temperature", 1); return layer; } layer parse_region(list *options, size_params params) { int coords = option_find_int(options, "coords", 4); int classes = option_find_int(options, "classes", 20); int num = option_find_int(options, "num", 1); params.w = option_find_int(options, "side", params.w); params.h = option_find_int(options, "side", params.h); layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords); assert(l.outputs == params.inputs); l.log = option_find_int_quiet(options, "log", 0); l.sqrt = option_find_int_quiet(options, "sqrt", 0); l.softmax = option_find_int(options, "softmax", 0); l.max_boxes = option_find_int_quiet(options, "max",30); l.jitter = option_find_float(options, "jitter", .2); l.rescore = option_find_int_quiet(options, "rescore",0); l.coord_scale = option_find_float(options, "coord_scale", 1); l.object_scale = option_find_float(options, "object_scale", 1); l.noobject_scale = option_find_float(options, "noobject_scale", 1); l.class_scale = option_find_float(options, "class_scale", 1); return l; } detection_layer parse_detection(list *options, size_params params) { int coords = option_find_int(options, "coords", 1); int classes = option_find_int(options, "classes", 1); int rescore = option_find_int(options, "rescore", 0); int num = option_find_int(options, "num", 1); int side = option_find_int(options, "side", 7); detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore); layer.softmax = option_find_int(options, "softmax", 0); layer.sqrt = option_find_int(options, "sqrt", 0); layer.max_boxes = option_find_int_quiet(options, "max",30); layer.coord_scale = option_find_float(options, "coord_scale", 1); layer.forced = option_find_int(options, "forced", 0); layer.object_scale = option_find_float(options, "object_scale", 1); layer.noobject_scale = option_find_float(options, "noobject_scale", 1); layer.class_scale = option_find_float(options, "class_scale", 1); layer.jitter = option_find_float(options, "jitter", .2); layer.random = option_find_int_quiet(options, "random", 0); layer.reorg = option_find_int_quiet(options, "reorg", 0); return layer; } cost_layer parse_cost(list *options, size_params params) { char *type_s = option_find_str(options, "type", "sse"); COST_TYPE type = get_cost_type(type_s); float scale = option_find_float_quiet(options, "scale",1); cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale); layer.ratio = option_find_float_quiet(options, "ratio",0); return layer; } crop_layer parse_crop(list *options, size_params params) { int crop_height = option_find_int(options, "crop_height",1); int crop_width = option_find_int(options, "crop_width",1); int flip = option_find_int(options, "flip",0); float angle = option_find_float(options, "angle",0); float saturation = option_find_float(options, "saturation",1); float exposure = option_find_float(options, "exposure",1); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before crop layer must output image."); int noadjust = option_find_int_quiet(options, "noadjust",0); crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); l.shift = option_find_float(options, "shift", 0); l.noadjust = noadjust; return l; } layer parse_reorg(list *options, size_params params) { int stride = option_find_int(options, "stride",1); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before reorg layer must output image."); layer layer = make_reorg_layer(batch,w,h,c,stride); return layer; } maxpool_layer parse_maxpool(list *options, size_params params) { int stride = option_find_int(options, "stride",1); int size = option_find_int(options, "size",stride); int padding = option_find_int_quiet(options, "padding", (size-1)/2); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before maxpool layer must output image."); maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride,padding); return layer; } avgpool_layer parse_avgpool(list *options, size_params params) { int batch,w,h,c; w = params.w; h = params.h; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before avgpool layer must output image."); avgpool_layer layer = make_avgpool_layer(batch,w,h,c); return layer; } dropout_layer parse_dropout(list *options, size_params params) { float probability = option_find_float(options, "probability", .5); dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); layer.out_w = params.w; layer.out_h = params.h; layer.out_c = params.c; return layer; } layer parse_normalization(list *options, size_params params) { float alpha = option_find_float(options, "alpha", .0001); float beta = option_find_float(options, "beta" , .75); float kappa = option_find_float(options, "kappa", 1); int size = option_find_int(options, "size", 5); layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); return l; } layer parse_batchnorm(list *options, size_params params) { layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c); return l; } layer parse_shortcut(list *options, size_params params, network net) { char *l = option_find(options, "from"); int index = atoi(l); if(index < 0) index = params.index + index; int batch = params.batch; layer from = net.layers[index]; layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); char *activation_s = option_find_str(options, "activation", "linear"); ACTIVATION activation = get_activation(activation_s); s.activation = activation; return s; } layer parse_activation(list *options, size_params params) { char *activation_s = option_find_str(options, "activation", "linear"); ACTIVATION activation = get_activation(activation_s); layer l = make_activation_layer(params.batch, params.inputs, activation); l.out_h = params.h; l.out_w = params.w; l.out_c = params.c; l.h = params.h; l.w = params.w; l.c = params.c; return l; } route_layer parse_route(list *options, size_params params, network net) { char *l = option_find(options, "layers"); int len = strlen(l); if(!l) error("Route Layer must specify input layers"); int n = 1; int i; for(i = 0; i < len; ++i){ if (l[i] == ',') ++n; } int *layers = calloc(n, sizeof(int)); int *sizes = calloc(n, sizeof(int)); for(i = 0; i < n; ++i){ int index = atoi(l); l = strchr(l, ',')+1; if(index < 0) index = params.index + index; layers[i] = index; sizes[i] = net.layers[index].outputs; } int batch = params.batch; route_layer layer = make_route_layer(batch, n, layers, sizes); convolutional_layer first = net.layers[layers[0]]; layer.out_w = first.out_w; layer.out_h = first.out_h; layer.out_c = first.out_c; for(i = 1; i < n; ++i){ int index = layers[i]; convolutional_layer next = net.layers[index]; if(next.out_w == first.out_w && next.out_h == first.out_h){ layer.out_c += next.out_c; }else{ layer.out_h = layer.out_w = layer.out_c = 0; } } return layer; } learning_rate_policy get_policy(char *s) { if (strcmp(s, "random")==0) return RANDOM; if (strcmp(s, "poly")==0) return POLY; if (strcmp(s, "constant")==0) return CONSTANT; if (strcmp(s, "step")==0) return STEP; if (strcmp(s, "exp")==0) return EXP; if (strcmp(s, "sigmoid")==0) return SIG; if (strcmp(s, "steps")==0) return STEPS; fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); return CONSTANT; } void parse_net_options(list *options, network *net) { net->batch = option_find_int(options, "batch",1); net->learning_rate = option_find_float(options, "learning_rate", .001); net->momentum = option_find_float(options, "momentum", .9); net->decay = option_find_float(options, "decay", .0001); int subdivs = option_find_int(options, "subdivisions",1); net->time_steps = option_find_int_quiet(options, "time_steps",1); net->batch /= subdivs; net->batch *= net->time_steps; net->subdivisions = subdivs; net->h = option_find_int_quiet(options, "height",0); net->w = option_find_int_quiet(options, "width",0); net->c = option_find_int_quiet(options, "channels",0); net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); net->min_crop = option_find_int_quiet(options, "min_crop",net->w); net->angle = option_find_float_quiet(options, "angle", 0); net->aspect = option_find_float_quiet(options, "aspect", 1); net->saturation = option_find_float_quiet(options, "saturation", 1); net->exposure = option_find_float_quiet(options, "exposure", 1); net->hue = option_find_float_quiet(options, "hue", 0); if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); char *policy_s = option_find_str(options, "policy", "constant"); net->policy = get_policy(policy_s); net->burn_in = option_find_int_quiet(options, "burn_in", 0); if(net->policy == STEP){ net->step = option_find_int(options, "step", 1); net->scale = option_find_float(options, "scale", 1); } else if (net->policy == STEPS){ char *l = option_find(options, "steps"); char *p = option_find(options, "scales"); if(!l || !p) error("STEPS policy must have steps and scales in cfg file"); int len = strlen(l); int n = 1; int i; for(i = 0; i < len; ++i){ if (l[i] == ',') ++n; } int *steps = calloc(n, sizeof(int)); float *scales = calloc(n, sizeof(float)); for(i = 0; i < n; ++i){ int step = atoi(l); float scale = atof(p); l = strchr(l, ',')+1; p = strchr(p, ',')+1; steps[i] = step; scales[i] = scale; } net->scales = scales; net->steps = steps; net->num_steps = n; } else if (net->policy == EXP){ net->gamma = option_find_float(options, "gamma", 1); } else if (net->policy == SIG){ net->gamma = option_find_float(options, "gamma", 1); net->step = option_find_int(options, "step", 1); } else if (net->policy == POLY || net->policy == RANDOM){ net->power = option_find_float(options, "power", 1); } net->max_batches = option_find_int(options, "max_batches", 0); } network parse_network_cfg(char *filename) { list *sections = read_cfg(filename); node *n = sections->front; if(!n) error("Config file has no sections"); network net = make_network(sections->size - 1); net.gpu_index = gpu_index; size_params params; section *s = (section *)n->val; list *options = s->options; if(!is_network(s)) error("First section must be [net] or [network]"); parse_net_options(options, &net); params.h = net.h; params.w = net.w; params.c = net.c; params.inputs = net.inputs; params.batch = net.batch; params.time_steps = net.time_steps; size_t workspace_size = 0; n = n->next; int count = 0; free_section(s); while(n){ params.index = count; fprintf(stderr, "%d: ", count); s = (section *)n->val; options = s->options; layer l = {0}; if(is_convolutional(s)){ l = parse_convolutional(options, params); }else if(is_local(s)){ l = parse_local(options, params); }else if(is_activation(s)){ l = parse_activation(options, params); }else if(is_deconvolutional(s)){ l = parse_deconvolutional(options, params); }else if(is_rnn(s)){ l = parse_rnn(options, params); }else if(is_gru(s)){ l = parse_gru(options, params); }else if(is_crnn(s)){ l = parse_crnn(options, params); }else if(is_connected(s)){ l = parse_connected(options, params); }else if(is_crop(s)){ l = parse_crop(options, params); }else if(is_cost(s)){ l = parse_cost(options, params); }else if(is_region(s)){ l = parse_region(options, params); }else if(is_detection(s)){ l = parse_detection(options, params); }else if(is_softmax(s)){ l = parse_softmax(options, params); }else if(is_normalization(s)){ l = parse_normalization(options, params); }else if(is_batchnorm(s)){ l = parse_batchnorm(options, params); }else if(is_maxpool(s)){ l = parse_maxpool(options, params); }else if(is_reorg(s)){ l = parse_reorg(options, params); }else if(is_avgpool(s)){ l = parse_avgpool(options, params); }else if(is_route(s)){ l = parse_route(options, params, net); }else if(is_shortcut(s)){ l = parse_shortcut(options, params, net); }else if(is_dropout(s)){ l = parse_dropout(options, params); l.output = net.layers[count-1].output; l.delta = net.layers[count-1].delta; #ifdef GPU l.output_gpu = net.layers[count-1].output_gpu; l.delta_gpu = net.layers[count-1].delta_gpu; #endif }else{ fprintf(stderr, "Type not recognized: %s\n", s->type); } l.dontload = option_find_int_quiet(options, "dontload", 0); l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); option_unused(options); net.layers[count] = l; if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; free_section(s); n = n->next; ++count; if(n){ params.h = l.out_h; params.w = l.out_w; params.c = l.out_c; params.inputs = l.outputs; } } free_list(sections); net.outputs = get_network_output_size(net); net.output = get_network_output(net); if(workspace_size){ //printf("%ld\n", workspace_size); #ifdef GPU if(gpu_index >= 0){ net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); }else { net.workspace = calloc(1, workspace_size); } #else net.workspace = calloc(1, workspace_size); #endif } return net; } LAYER_TYPE string_to_layer_type(char * type) { if (strcmp(type, "[shortcut]")==0) return SHORTCUT; if (strcmp(type, "[crop]")==0) return CROP; if (strcmp(type, "[cost]")==0) return COST; if (strcmp(type, "[detection]")==0) return DETECTION; if (strcmp(type, "[region]")==0) return REGION; if (strcmp(type, "[local]")==0) return LOCAL; if (strcmp(type, "[deconv]")==0 || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL; if (strcmp(type, "[conv]")==0 || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; if (strcmp(type, "[activation]")==0) return ACTIVE; if (strcmp(type, "[net]")==0 || strcmp(type, "[network]")==0) return NETWORK; if (strcmp(type, "[crnn]")==0) return CRNN; if (strcmp(type, "[gru]")==0) return GRU; if (strcmp(type, "[rnn]")==0) return RNN; if (strcmp(type, "[conn]")==0 || strcmp(type, "[connected]")==0) return CONNECTED; if (strcmp(type, "[max]")==0 || strcmp(type, "[maxpool]")==0) return MAXPOOL; if (strcmp(type, "[reorg]")==0) return REORG; if (strcmp(type, "[avg]")==0 || strcmp(type, "[avgpool]")==0) return AVGPOOL; if (strcmp(type, "[dropout]")==0) return DROPOUT; if (strcmp(type, "[lrn]")==0 || strcmp(type, "[normalization]")==0) return NORMALIZATION; if (strcmp(type, "[batchnorm]")==0) return BATCHNORM; if (strcmp(type, "[soft]")==0 || strcmp(type, "[softmax]")==0) return SOFTMAX; if (strcmp(type, "[route]")==0) return ROUTE; return BLANK; } int is_shortcut(section *s) { return (strcmp(s->type, "[shortcut]")==0); } int is_crop(section *s) { return (strcmp(s->type, "[crop]")==0); } int is_cost(section *s) { return (strcmp(s->type, "[cost]")==0); } int is_region(section *s) { return (strcmp(s->type, "[region]")==0); } int is_detection(section *s) { return (strcmp(s->type, "[detection]")==0); } int is_local(section *s) { return (strcmp(s->type, "[local]")==0); } int is_deconvolutional(section *s) { return (strcmp(s->type, "[deconv]")==0 || strcmp(s->type, "[deconvolutional]")==0); } int is_convolutional(section *s) { return (strcmp(s->type, "[conv]")==0 || strcmp(s->type, "[convolutional]")==0); } int is_activation(section *s) { return (strcmp(s->type, "[activation]")==0); } int is_network(section *s) { return (strcmp(s->type, "[net]")==0 || strcmp(s->type, "[network]")==0); } int is_crnn(section *s) { return (strcmp(s->type, "[crnn]")==0); } int is_gru(section *s) { return (strcmp(s->type, "[gru]")==0); } int is_rnn(section *s) { return (strcmp(s->type, "[rnn]")==0); } int is_connected(section *s) { return (strcmp(s->type, "[conn]")==0 || strcmp(s->type, "[connected]")==0); } int is_reorg(section *s) { return (strcmp(s->type, "[reorg]")==0); } int is_maxpool(section *s) { return (strcmp(s->type, "[max]")==0 || strcmp(s->type, "[maxpool]")==0); } int is_avgpool(section *s) { return (strcmp(s->type, "[avg]")==0 || strcmp(s->type, "[avgpool]")==0); } int is_dropout(section *s) { return (strcmp(s->type, "[dropout]")==0); } int is_normalization(section *s) { return (strcmp(s->type, "[lrn]")==0 || strcmp(s->type, "[normalization]")==0); } int is_batchnorm(section *s) { return (strcmp(s->type, "[batchnorm]")==0); } int is_softmax(section *s) { return (strcmp(s->type, "[soft]")==0 || strcmp(s->type, "[softmax]")==0); } int is_route(section *s) { return (strcmp(s->type, "[route]")==0); } list *read_cfg(char *filename) { FILE *file = fopen(filename, "r"); if(file == 0) file_error(filename); char *line; int nu = 0; list *sections = make_list(); section *current = 0; while((line=fgetl(file)) != 0){ ++ nu; strip(line); switch(line[0]){ case '[': current = malloc(sizeof(section)); list_insert(sections, current); current->options = make_list(); current->type = line; break; case '\0': case '#': case ';': free(line); break; default: if(!read_option(line, current->options)){ fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); free(line); } break; } } fclose(file); return sections; } void save_weights_double(network net, char *filename) { fprintf(stderr, "Saving doubled weights to %s\n", filename); FILE *fp = fopen(filename, "w"); if(!fp) file_error(filename); fwrite(&net.learning_rate, sizeof(float), 1, fp); fwrite(&net.momentum, sizeof(float), 1, fp); fwrite(&net.decay, sizeof(float), 1, fp); fwrite(net.seen, sizeof(int), 1, fp); int i,j,k; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ #ifdef GPU if(gpu_index >= 0){ pull_convolutional_layer(l); } #endif float zero = 0; fwrite(l.biases, sizeof(float), l.n, fp); fwrite(l.biases, sizeof(float), l.n, fp); for (j = 0; j < l.n; ++j){ int index = j*l.c*l.size*l.size; fwrite(l.weights+index, sizeof(float), l.c*l.size*l.size, fp); for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); } for (j = 0; j < l.n; ++j){ int index = j*l.c*l.size*l.size; for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); fwrite(l.weights+index, sizeof(float), l.c*l.size*l.size, fp); } } } fclose(fp); } void save_convolutional_weights_binary(layer l, FILE *fp) { #ifdef GPU if(gpu_index >= 0){ pull_convolutional_layer(l); } #endif binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); int size = l.c*l.size*l.size; int i, j, k; fwrite(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize){ fwrite(l.scales, sizeof(float), l.n, fp); fwrite(l.rolling_mean, sizeof(float), l.n, fp); fwrite(l.rolling_variance, sizeof(float), l.n, fp); } for(i = 0; i < l.n; ++i){ float mean = l.binary_weights[i*size]; if(mean < 0) mean = -mean; fwrite(&mean, sizeof(float), 1, fp); for(j = 0; j < size/8; ++j){ int index = i*size + j*8; unsigned char c = 0; for(k = 0; k < 8; ++k){ if (j*8 + k >= size) break; if (l.binary_weights[index + k] > 0) c = (c | 1<= 0){ pull_convolutional_layer(l); } #endif int num = l.n*l.c*l.size*l.size; fwrite(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize){ fwrite(l.scales, sizeof(float), l.n, fp); fwrite(l.rolling_mean, sizeof(float), l.n, fp); fwrite(l.rolling_variance, sizeof(float), l.n, fp); } fwrite(l.weights, sizeof(float), num, fp); } void save_batchnorm_weights(layer l, FILE *fp) { #ifdef GPU if(gpu_index >= 0){ pull_batchnorm_layer(l); } #endif fwrite(l.scales, sizeof(float), l.c, fp); fwrite(l.rolling_mean, sizeof(float), l.c, fp); fwrite(l.rolling_variance, sizeof(float), l.c, fp); } void save_connected_weights(layer l, FILE *fp) { #ifdef GPU if(gpu_index >= 0){ pull_connected_layer(l); } #endif fwrite(l.biases, sizeof(float), l.outputs, fp); fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); if (l.batch_normalize){ fwrite(l.scales, sizeof(float), l.outputs, fp); fwrite(l.rolling_mean, sizeof(float), l.outputs, fp); fwrite(l.rolling_variance, sizeof(float), l.outputs, fp); } } void save_weights_upto(network net, char *filename, int cutoff) { #ifdef GPU if(net.gpu_index >= 0){ cuda_set_device(net.gpu_index); } #endif fprintf(stderr, "Saving weights to %s\n", filename); FILE *fp = fopen(filename, "w"); if(!fp) file_error(filename); int major = 0; int minor = 1; int revision = 0; fwrite(&major, sizeof(int), 1, fp); fwrite(&minor, sizeof(int), 1, fp); fwrite(&revision, sizeof(int), 1, fp); fwrite(net.seen, sizeof(int), 1, fp); int i; for(i = 0; i < net.n && i < cutoff; ++i){ layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ save_convolutional_weights(l, fp); } if(l.type == CONNECTED){ save_connected_weights(l, fp); } if(l.type == BATCHNORM){ save_batchnorm_weights(l, fp); } if(l.type == RNN){ save_connected_weights(*(l.input_layer), fp); save_connected_weights(*(l.self_layer), fp); save_connected_weights(*(l.output_layer), fp); } if(l.type == GRU){ save_connected_weights(*(l.input_z_layer), fp); save_connected_weights(*(l.input_r_layer), fp); save_connected_weights(*(l.input_h_layer), fp); save_connected_weights(*(l.state_z_layer), fp); save_connected_weights(*(l.state_r_layer), fp); save_connected_weights(*(l.state_h_layer), fp); } if(l.type == CRNN){ save_convolutional_weights(*(l.input_layer), fp); save_convolutional_weights(*(l.self_layer), fp); save_convolutional_weights(*(l.output_layer), fp); } if(l.type == LOCAL){ #ifdef GPU if(gpu_index >= 0){ pull_local_layer(l); } #endif int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; fwrite(l.biases, sizeof(float), l.outputs, fp); fwrite(l.weights, sizeof(float), size, fp); } } fclose(fp); } void save_weights(network net, char *filename) { save_weights_upto(net, filename, net.n); } void transpose_matrix(float *a, int rows, int cols) { float *transpose = calloc(rows*cols, sizeof(float)); int x, y; for(x = 0; x < rows; ++x){ for(y = 0; y < cols; ++y){ transpose[y*rows + x] = a[x*cols + y]; } } memcpy(a, transpose, rows*cols*sizeof(float)); free(transpose); } void load_connected_weights(layer l, FILE *fp, int transpose) { fread(l.biases, sizeof(float), l.outputs, fp); fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); if(transpose){ transpose_matrix(l.weights, l.inputs, l.outputs); } //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); if (l.batch_normalize && (!l.dontloadscales)){ fread(l.scales, sizeof(float), l.outputs, fp); fread(l.rolling_mean, sizeof(float), l.outputs, fp); fread(l.rolling_variance, sizeof(float), l.outputs, fp); //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); } #ifdef GPU if(gpu_index >= 0){ push_connected_layer(l); } #endif } void load_batchnorm_weights(layer l, FILE *fp) { fread(l.scales, sizeof(float), l.c, fp); fread(l.rolling_mean, sizeof(float), l.c, fp); fread(l.rolling_variance, sizeof(float), l.c, fp); #ifdef GPU if(gpu_index >= 0){ push_batchnorm_layer(l); } #endif } void load_convolutional_weights_binary(layer l, FILE *fp) { fread(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize && (!l.dontloadscales)){ fread(l.scales, sizeof(float), l.n, fp); fread(l.rolling_mean, sizeof(float), l.n, fp); fread(l.rolling_variance, sizeof(float), l.n, fp); } int size = l.c*l.size*l.size; int i, j, k; for(i = 0; i < l.n; ++i){ float mean = 0; fread(&mean, sizeof(float), 1, fp); for(j = 0; j < size/8; ++j){ int index = i*size + j*8; unsigned char c = 0; fread(&c, sizeof(char), 1, fp); for(k = 0; k < 8; ++k){ if (j*8 + k >= size) break; l.weights[index + k] = (c & 1<= 0){ push_convolutional_layer(l); } #endif } void load_convolutional_weights(layer l, FILE *fp) { if(l.binary){ //load_convolutional_weights_binary(l, fp); //return; } int num = l.n*l.c*l.size*l.size; fread(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize && (!l.dontloadscales)){ fread(l.scales, sizeof(float), l.n, fp); fread(l.rolling_mean, sizeof(float), l.n, fp); fread(l.rolling_variance, sizeof(float), l.n, fp); } fread(l.weights, sizeof(float), num, fp); //if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1); if (l.flipped) { transpose_matrix(l.weights, l.c*l.size*l.size, l.n); } //if (l.binary) binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.weights); #ifdef GPU if(gpu_index >= 0){ push_convolutional_layer(l); } #endif } void load_weights_upto(network *net, char *filename, int cutoff) { #ifdef GPU if(net->gpu_index >= 0){ cuda_set_device(net->gpu_index); } #endif fprintf(stderr, "Loading weights from %s...", filename); fflush(stdout); FILE *fp = fopen(filename, "rb"); if(!fp) file_error(filename); int major; int minor; int revision; fread(&major, sizeof(int), 1, fp); fread(&minor, sizeof(int), 1, fp); fread(&revision, sizeof(int), 1, fp); fread(net->seen, sizeof(int), 1, fp); int transpose = (major > 1000) || (minor > 1000); int i; for(i = 0; i < net->n && i < cutoff; ++i){ layer l = net->layers[i]; if (l.dontload) continue; if(l.type == CONVOLUTIONAL){ load_convolutional_weights(l, fp); } if(l.type == DECONVOLUTIONAL){ int num = l.n*l.c*l.size*l.size; fread(l.biases, sizeof(float), l.n, fp); fread(l.weights, sizeof(float), num, fp); #ifdef GPU if(gpu_index >= 0){ push_deconvolutional_layer(l); } #endif } if(l.type == CONNECTED){ load_connected_weights(l, fp, transpose); } if(l.type == BATCHNORM){ load_batchnorm_weights(l, fp); } if(l.type == CRNN){ load_convolutional_weights(*(l.input_layer), fp); load_convolutional_weights(*(l.self_layer), fp); load_convolutional_weights(*(l.output_layer), fp); } if(l.type == RNN){ load_connected_weights(*(l.input_layer), fp, transpose); load_connected_weights(*(l.self_layer), fp, transpose); load_connected_weights(*(l.output_layer), fp, transpose); } if(l.type == GRU){ load_connected_weights(*(l.input_z_layer), fp, transpose); load_connected_weights(*(l.input_r_layer), fp, transpose); load_connected_weights(*(l.input_h_layer), fp, transpose); load_connected_weights(*(l.state_z_layer), fp, transpose); load_connected_weights(*(l.state_r_layer), fp, transpose); load_connected_weights(*(l.state_h_layer), fp, transpose); } if(l.type == LOCAL){ int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; fread(l.biases, sizeof(float), l.outputs, fp); fread(l.weights, sizeof(float), size, fp); #ifdef GPU if(gpu_index >= 0){ push_local_layer(l); } #endif } } fprintf(stderr, "Done!\n"); fclose(fp); } void load_weights(network *net, char *filename) { load_weights_upto(net, filename, net->n); }