#include #include "network.h" #include "image.h" #include "data.h" #include "utils.h" #include "connected_layer.h" #include "convolutional_layer.h" #include "maxpool_layer.h" #include "normalization_layer.h" #include "softmax_layer.h" #include "dropout_layer.h" network make_network(int n, int batch) { network net; net.n = n; net.batch = batch; net.layers = calloc(net.n, sizeof(void *)); net.types = calloc(net.n, sizeof(LAYER_TYPE)); net.outputs = 0; net.output = 0; #ifdef GPU net.input_cl = 0; #endif return net; } #ifdef GPU void forward_network(network net, float *input, int train) { cl_setup(); size_t size = get_network_input_size(net); if(!net.input_cl){ net.input_cl = clCreateBuffer(cl.context, CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error); check_error(cl); } cl_write_array(net.input_cl, input, size); cl_mem input_cl = net.input_cl; int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; forward_convolutional_layer_gpu(layer, input_cl); input_cl = layer.output_cl; input = layer.output; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; forward_connected_layer(layer, input, train); input = layer.output; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; forward_softmax_layer(layer, input); input = layer.output; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; forward_maxpool_layer(layer, input); input = layer.output; } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; forward_normalization_layer(layer, input); input = layer.output; } } } #else void forward_network(network net, float *input, int train) { int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; forward_convolutional_layer(layer, input); input = layer.output; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; forward_connected_layer(layer, input); input = layer.output; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; forward_softmax_layer(layer, input); input = layer.output; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; forward_maxpool_layer(layer, input); input = layer.output; } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; forward_normalization_layer(layer, input); input = layer.output; } else if(net.types[i] == DROPOUT){ if(!train) continue; dropout_layer layer = *(dropout_layer *)net.layers[i]; forward_dropout_layer(layer, input); } } } #endif void update_network(network net) { int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; update_convolutional_layer(layer); } else if(net.types[i] == MAXPOOL){ //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; } else if(net.types[i] == SOFTMAX){ //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; } else if(net.types[i] == NORMALIZATION){ //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; update_connected_layer(layer); } } } float *get_network_output_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == DROPOUT){ return get_network_output_layer(net, i-1); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; return layer.output; } return 0; } float *get_network_output(network net) { return get_network_output_layer(net, net.n-1); } float *get_network_delta_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == DROPOUT){ return get_network_delta_layer(net, i-1); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.delta; } return 0; } float *get_network_delta(network net) { return get_network_delta_layer(net, net.n-1); } float calculate_error_network(network net, float *truth) { float sum = 0; float *delta = get_network_delta(net); float *out = get_network_output(net); int i; for(i = 0; i < get_network_output_size(net)*net.batch; ++i){ //if(i %get_network_output_size(net) == 0) printf("\n"); //printf("%5.2f %5.2f, ", out[i], truth[i]); //if(i == get_network_output_size(net)) printf("\n"); delta[i] = truth[i] - out[i]; //printf("%.10f, ", out[i]); sum += delta[i]*delta[i]; } //printf("\n"); return sum; } int get_predicted_class_network(network net) { float *out = get_network_output(net); int k = get_network_output_size(net); return max_index(out, k); } float backward_network(network net, float *input, float *truth) { float error = calculate_error_network(net, truth); int i; float *prev_input; float *prev_delta; for(i = net.n-1; i >= 0; --i){ if(i == 0){ prev_input = input; prev_delta = 0; }else{ prev_input = get_network_output_layer(net, i-1); prev_delta = get_network_delta_layer(net, i-1); } if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; backward_convolutional_layer(layer, prev_delta); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; backward_connected_layer(layer, prev_input, prev_delta); } } return error; } float train_network_datum(network net, float *x, float *y) { forward_network(net, x, 1); //int class = get_predicted_class_network(net); float error = backward_network(net, x, y); update_network(net); //return (y[class]?1:0); return error; } float train_network_sgd(network net, data d, int n) { int batch = net.batch; float *X = calloc(batch*d.X.cols, sizeof(float)); float *y = calloc(batch*d.y.cols, sizeof(float)); int i,j; float sum = 0; for(i = 0; i < n; ++i){ for(j = 0; j < batch; ++j){ int index = rand()%d.X.rows; memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); } float err = train_network_datum(net, X, y); sum += err; //train_network_datum(net, X, y); /* float *y = d.y.vals[index]; int class = get_predicted_class_network(net); correct += (y[class]?1:0); */ /* for(j = 0; j < d.y.cols*batch; ++j){ printf("%6.3f ", y[j]); } printf("\n"); for(j = 0; j < d.y.cols*batch; ++j){ printf("%6.3f ", get_network_output(net)[j]); } printf("\n"); printf("\n"); */ //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]); //if((i+1)%10 == 0){ // printf("%d: %f\n", (i+1), (float)correct/(i+1)); //} } //printf("Accuracy: %f\n",(float) correct/n); free(X); free(y); return (float)sum/(n*batch); } float train_network_batch(network net, data d, int n) { int i,j; float sum = 0; int batch = 2; for(i = 0; i < n; ++i){ for(j = 0; j < batch; ++j){ int index = rand()%d.X.rows; float *x = d.X.vals[index]; float *y = d.y.vals[index]; forward_network(net, x, 1); sum += backward_network(net, x, y); } update_network(net); } return (float)sum/(n*batch); } void train_network(network net, data d) { int i; int correct = 0; for(i = 0; i < d.X.rows; ++i){ correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]); if(i%100 == 0){ visualize_network(net); cvWaitKey(10); } } visualize_network(net); cvWaitKey(100); fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows); } int get_network_input_size_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.h*layer.w*layer.c; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.h*layer.w*layer.c; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.inputs; } else if(net.types[i] == DROPOUT){ dropout_layer layer = *(dropout_layer *) net.layers[i]; return layer.inputs; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.inputs; } return 0; } int get_network_output_size_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; image output = get_convolutional_image(layer); return output.h*output.w*output.c; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; image output = get_maxpool_image(layer); return output.h*output.w*output.c; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.outputs; } else if(net.types[i] == DROPOUT){ dropout_layer layer = *(dropout_layer *) net.layers[i]; return layer.inputs; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.inputs; } return 0; } int resize_network(network net, int h, int w, int c) { int i; for (i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer *layer = (convolutional_layer *)net.layers[i]; resize_convolutional_layer(layer, h, w, c); image output = get_convolutional_image(*layer); h = output.h; w = output.w; c = output.c; }else if(net.types[i] == MAXPOOL){ maxpool_layer *layer = (maxpool_layer *)net.layers[i]; resize_maxpool_layer(layer, h, w, c); image output = get_maxpool_image(*layer); h = output.h; w = output.w; c = output.c; }else if(net.types[i] == NORMALIZATION){ normalization_layer *layer = (normalization_layer *)net.layers[i]; resize_normalization_layer(layer, h, w, c); image output = get_normalization_image(*layer); h = output.h; w = output.w; c = output.c; }else{ error("Cannot resize this type of layer"); } } return 0; } int get_network_output_size(network net) { int i = net.n-1; return get_network_output_size_layer(net, i); } int get_network_input_size(network net) { return get_network_input_size_layer(net, 0); } image get_network_image_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return get_convolutional_image(layer); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return get_maxpool_image(layer); } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; return get_normalization_image(layer); } return make_empty_image(0,0,0); } image get_network_image(network net) { int i; for(i = net.n-1; i >= 0; --i){ image m = get_network_image_layer(net, i); if(m.h != 0) return m; } return make_empty_image(0,0,0); } void visualize_network(network net) { image *prev = 0; int i; char buff[256]; for(i = 0; i < net.n; ++i){ sprintf(buff, "Layer %d", i); if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; prev = visualize_convolutional_layer(layer, buff, prev); } if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; visualize_normalization_layer(layer, buff); } } } float *network_predict(network net, float *input) { forward_network(net, input, 0); float *out = get_network_output(net); return out; } matrix network_predict_data(network net, data test) { int i,j,b; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.rows, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] = out[j+b*k]; } } } free(X); return pred; } void print_network(network net) { int i,j; for(i = 0; i < net.n; ++i){ float *output = 0; int n = 0; if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; output = layer.output; image m = get_convolutional_image(layer); n = m.h*m.w*m.c; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; output = layer.output; image m = get_maxpool_image(layer); n = m.h*m.w*m.c; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; output = layer.output; n = layer.outputs; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; output = layer.output; n = layer.inputs; } float mean = mean_array(output, n); float vari = variance_array(output, n); fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); if(n > 100) n = 100; for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); if(n == 100)fprintf(stderr,".....\n"); fprintf(stderr, "\n"); } } float network_accuracy(network net, data d) { matrix guess = network_predict_data(net, d); float acc = matrix_accuracy(d.y, guess); free_matrix(guess); return acc; }