#include "darknet.h" void extract_voxel(char *lfile, char *rfile, char *prefix) { #ifdef OPENCV int w = 1920; int h = 1080; int shift = 0; int count = 0; CvCapture *lcap = cvCaptureFromFile(lfile); CvCapture *rcap = cvCaptureFromFile(rfile); while(1){ image l = get_image_from_stream(lcap); image r = get_image_from_stream(rcap); if(!l.w || !r.w) break; if(count%100 == 0) { shift = best_3d_shift_r(l, r, -l.h/100, l.h/100); printf("%d\n", shift); } image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h); image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h); char buff[256]; sprintf(buff, "%s_%05d_l", prefix, count); save_image(ls, buff); sprintf(buff, "%s_%05d_r", prefix, count); save_image(rs, buff); free_image(l); free_image(r); free_image(ls); free_image(rs); ++count; } #else printf("need OpenCV for extraction\n"); #endif } void train_voxel(char *cfgfile, char *weightfile) { char *train_images = "/data/imagenet/imagenet1k.train.list"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.scale = 4; args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = SUPER_DATA; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); } void test_voxel(char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); resize_network(&net, im.w, im.h); printf("%d %d\n", im.w, im.h); float *X = im.data; time=clock(); network_predict(net, X); image out = get_network_image(net); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); save_image(out, "out"); free_image(im); if (filename) break; } } void run_voxel(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5] : 0; if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights); else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename); else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]); /* else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights); */ }