#include "darknet.h" void train_writing(char *cfgfile, char *weightfile) { char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; list *plist = get_paths("figures.list"); char **paths = (char **)list_to_array(plist); clock_t time; int N = plist->size; printf("N: %d\n", N); image out = get_network_image(net); data train, buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.out_w = out.w; args.out_h = out.h; args.paths = paths; args.n = imgs; args.m = N; args.d = &buffer; args.type = WRITING_DATA; pthread_t load_thread = load_data_in_thread(args); int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded %lf seconds\n",sec(clock()-time)); time=clock(); float loss = train_network(net, train); /* image pred = float_to_image(64, 64, 1, out); print_image(pred); */ /* image im = float_to_image(256, 256, 3, train.X.vals[0]); image lab = float_to_image(64, 64, 1, train.y.vals[0]); image pred = float_to_image(64, 64, 1, out); show_image(im, "image"); show_image(lab, "label"); print_image(lab); show_image(pred, "pred"); cvWaitKey(0); */ if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); free_data(train); if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net)); save_weights(net, buff); } if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } } } void test_writing(char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); resize_network(&net, im.w, im.h); printf("%d %d %d\n", im.h, im.w, im.c); float *X = im.data; time=clock(); network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); image pred = get_network_image(net); image upsampled = resize_image(pred, im.w, im.h); image thresh = threshold_image(upsampled, .5); pred = thresh; show_image(pred, "prediction"); show_image(im, "orig"); #ifdef OPENCV cvWaitKey(0); cvDestroyAllWindows(); #endif free_image(upsampled); free_image(thresh); free_image(im); if (filename) break; } } void run_writing(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5] : 0; if(0==strcmp(argv[2], "train")) train_writing(cfg, weights); else if(0==strcmp(argv[2], "test")) test_writing(cfg, weights, filename); }