#include "connected_layer.h" #include "batchnorm_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" #include "gemm.h" #include #include #include #include connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize) { int i; connected_layer l = {0}; l.type = CONNECTED; l.inputs = inputs; l.outputs = outputs; l.batch=batch; l.batch_normalize = batch_normalize; l.h = 1; l.w = 1; l.c = inputs; l.out_h = 1; l.out_w = 1; l.out_c = outputs; l.output = calloc(batch*outputs, sizeof(float)); l.delta = calloc(batch*outputs, sizeof(float)); l.weight_updates = calloc(inputs*outputs, sizeof(float)); l.bias_updates = calloc(outputs, sizeof(float)); l.weights = calloc(outputs*inputs, sizeof(float)); l.biases = calloc(outputs, sizeof(float)); //float scale = 1./sqrt(inputs); float scale = sqrt(2./inputs); for(i = 0; i < outputs*inputs; ++i){ l.weights[i] = scale*rand_uniform(-1, 1); } for(i = 0; i < outputs; ++i){ l.biases[i] = 0; } if(batch_normalize){ l.scales = calloc(outputs, sizeof(float)); l.scale_updates = calloc(outputs, sizeof(float)); for(i = 0; i < outputs; ++i){ l.scales[i] = 1; } l.mean = calloc(outputs, sizeof(float)); l.mean_delta = calloc(outputs, sizeof(float)); l.variance = calloc(outputs, sizeof(float)); l.variance_delta = calloc(outputs, sizeof(float)); l.rolling_mean = calloc(outputs, sizeof(float)); l.rolling_variance = calloc(outputs, sizeof(float)); l.x = calloc(batch*outputs, sizeof(float)); l.x_norm = calloc(batch*outputs, sizeof(float)); } #ifdef GPU l.weights_gpu = cuda_make_array(l.weights, outputs*inputs); l.biases_gpu = cuda_make_array(l.biases, outputs); l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs); l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); l.output_gpu = cuda_make_array(l.output, outputs*batch); l.delta_gpu = cuda_make_array(l.delta, outputs*batch); if(batch_normalize){ l.scales_gpu = cuda_make_array(l.scales, outputs); l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs); l.mean_gpu = cuda_make_array(l.mean, outputs); l.variance_gpu = cuda_make_array(l.variance, outputs); l.rolling_mean_gpu = cuda_make_array(l.mean, outputs); l.rolling_variance_gpu = cuda_make_array(l.variance, outputs); l.mean_delta_gpu = cuda_make_array(l.mean, outputs); l.variance_delta_gpu = cuda_make_array(l.variance, outputs); l.x_gpu = cuda_make_array(l.output, l.batch*outputs); l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs); } #endif l.activation = activation; fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); return l; } void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay) { axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); scal_cpu(l.outputs, momentum, l.bias_updates, 1); if(l.batch_normalize){ axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1); scal_cpu(l.outputs, momentum, l.scale_updates, 1); } axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1); axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1); scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1); } void forward_connected_layer(connected_layer l, network_state state) { int i; fill_cpu(l.outputs*l.batch, 0, l.output, 1); int m = l.batch; int k = l.inputs; int n = l.outputs; float *a = state.input; float *b = l.weights; float *c = l.output; gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); if(l.batch_normalize){ if(state.train){ mean_cpu(l.output, l.batch, l.outputs, 1, l.mean); variance_cpu(l.output, l.mean, l.batch, l.outputs, 1, l.variance); scal_cpu(l.outputs, .95, l.rolling_mean, 1); axpy_cpu(l.outputs, .05, l.mean, 1, l.rolling_mean, 1); scal_cpu(l.outputs, .95, l.rolling_variance, 1); axpy_cpu(l.outputs, .05, l.variance, 1, l.rolling_variance, 1); copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1); normalize_cpu(l.output, l.mean, l.variance, l.batch, l.outputs, 1); copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1); } else { normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.outputs, 1); } scale_bias(l.output, l.scales, l.batch, l.outputs, 1); } for(i = 0; i < l.batch; ++i){ axpy_cpu(l.outputs, 1, l.biases, 1, l.output + i*l.outputs, 1); } activate_array(l.output, l.outputs*l.batch, l.activation); } void backward_connected_layer(connected_layer l, network_state state) { int i; gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); for(i = 0; i < l.batch; ++i){ axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1); } if(l.batch_normalize){ backward_scale_cpu(l.x_norm, l.delta, l.batch, l.outputs, 1, l.scale_updates); scale_bias(l.delta, l.scales, l.batch, l.outputs, 1); mean_delta_cpu(l.delta, l.variance, l.batch, l.outputs, 1, l.mean_delta); variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.outputs, 1, l.variance_delta); normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.outputs, 1, l.delta); } int m = l.outputs; int k = l.batch; int n = l.inputs; float *a = l.delta; float *b = state.input; float *c = l.weight_updates; gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); m = l.batch; k = l.outputs; n = l.inputs; a = l.delta; b = l.weights; c = state.delta; if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); } void denormalize_connected_layer(layer l) { int i, j; for(i = 0; i < l.outputs; ++i){ float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); for(j = 0; j < l.inputs; ++j){ l.weights[i*l.inputs + j] *= scale; } l.biases[i] -= l.rolling_mean[i] * scale; l.scales[i] = 1; l.rolling_mean[i] = 0; l.rolling_variance[i] = 1; } } #ifdef GPU void pull_connected_layer(connected_layer l) { cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs); cuda_pull_array(l.biases_gpu, l.biases, l.outputs); cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs); if (l.batch_normalize){ cuda_pull_array(l.scales_gpu, l.scales, l.outputs); cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); } } void push_connected_layer(connected_layer l) { cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs); cuda_push_array(l.biases_gpu, l.biases, l.outputs); cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs); if (l.batch_normalize){ cuda_push_array(l.scales_gpu, l.scales, l.outputs); cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); } } void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay) { axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1); if(l.batch_normalize){ axpy_ongpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); scal_ongpu(l.outputs, momentum, l.scale_updates_gpu, 1); } axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1); } void forward_connected_layer_gpu(connected_layer l, network_state state) { int i; fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); int m = l.batch; int k = l.inputs; int n = l.outputs; float * a = state.input; float * b = l.weights_gpu; float * c = l.output_gpu; gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); if(l.batch_normalize){ forward_batchnorm_layer_gpu(l, state); } for(i = 0; i < l.batch; ++i){ axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1); } activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); } void backward_connected_layer_gpu(connected_layer l, network_state state) { int i; constrain_ongpu(l.outputs*l.batch, 5, l.delta_gpu, 1); gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); for(i = 0; i < l.batch; ++i){ axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1); } if(l.batch_normalize){ backward_batchnorm_layer_gpu(l, state); } int m = l.outputs; int k = l.batch; int n = l.inputs; float * a = l.delta_gpu; float * b = state.input; float * c = l.weight_updates_gpu; gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); m = l.batch; k = l.outputs; n = l.inputs; a = l.delta_gpu; b = l.weights_gpu; c = state.delta; if(c) gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); } #endif