#include "deconvolutional_layer.h" #include "convolutional_layer.h" #include "utils.h" #include "im2col.h" #include "col2im.h" #include "blas.h" #include "gemm.h" #include #include int deconvolutional_out_height(deconvolutional_layer l) { int h = l.stride*(l.h - 1) + l.size; return h; } int deconvolutional_out_width(deconvolutional_layer l) { int w = l.stride*(l.w - 1) + l.size; return w; } int deconvolutional_out_size(deconvolutional_layer l) { return deconvolutional_out_height(l) * deconvolutional_out_width(l); } image get_deconvolutional_image(deconvolutional_layer l) { int h,w,c; h = deconvolutional_out_height(l); w = deconvolutional_out_width(l); c = l.n; return float_to_image(w,h,c,l.output); } image get_deconvolutional_delta(deconvolutional_layer l) { int h,w,c; h = deconvolutional_out_height(l); w = deconvolutional_out_width(l); c = l.n; return float_to_image(w,h,c,l.delta); } deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) { int i; deconvolutional_layer l = {0}; l.type = DECONVOLUTIONAL; l.h = h; l.w = w; l.c = c; l.n = n; l.batch = batch; l.stride = stride; l.size = size; l.filters = calloc(c*n*size*size, sizeof(float)); l.filter_updates = calloc(c*n*size*size, sizeof(float)); l.biases = calloc(n, sizeof(float)); l.bias_updates = calloc(n, sizeof(float)); float scale = 1./sqrt(size*size*c); for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_normal(); for(i = 0; i < n; ++i){ l.biases[i] = scale; } int out_h = deconvolutional_out_height(l); int out_w = deconvolutional_out_width(l); l.out_h = out_h; l.out_w = out_w; l.out_c = n; l.outputs = l.out_w * l.out_h * l.out_c; l.inputs = l.w * l.h * l.c; l.col_image = calloc(h*w*size*size*n, sizeof(float)); l.output = calloc(l.batch*out_h * out_w * n, sizeof(float)); l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float)); #ifdef GPU l.filters_gpu = cuda_make_array(l.filters, c*n*size*size); l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size); l.biases_gpu = cuda_make_array(l.biases, n); l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n); l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); #endif l.activation = activation; fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); return l; } void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w) { l->h = h; l->w = w; int out_h = deconvolutional_out_height(*l); int out_w = deconvolutional_out_width(*l); l->col_image = realloc(l->col_image, out_h*out_w*l->size*l->size*l->c*sizeof(float)); l->output = realloc(l->output, l->batch*out_h * out_w * l->n*sizeof(float)); l->delta = realloc(l->delta, l->batch*out_h * out_w * l->n*sizeof(float)); #ifdef GPU cuda_free(l->col_image_gpu); cuda_free(l->delta_gpu); cuda_free(l->output_gpu); l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c); l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n); l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n); #endif } void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state) { int i; int out_h = deconvolutional_out_height(l); int out_w = deconvolutional_out_width(l); int size = out_h*out_w; int m = l.size*l.size*l.n; int n = l.h*l.w; int k = l.c; bias_output(l.output, l.biases, l.batch, l.n, size); for(i = 0; i < l.batch; ++i){ float *a = l.filters; float *b = state.input + i*l.c*l.h*l.w; float *c = l.col_image; gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size); } activate_array(l.output, l.batch*l.n*size, l.activation); } void backward_deconvolutional_layer(deconvolutional_layer l, network_state state) { float alpha = 1./l.batch; int out_h = deconvolutional_out_height(l); int out_w = deconvolutional_out_width(l); int size = out_h*out_w; int i; gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta); backward_bias(l.bias_updates, l.delta, l.batch, l.n, size); if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float)); for(i = 0; i < l.batch; ++i){ int m = l.c; int n = l.size*l.size*l.n; int k = l.h*l.w; float *a = state.input + i*m*n; float *b = l.col_image; float *c = l.filter_updates; im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w, l.size, l.stride, 0, b); gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); if(state.delta){ int m = l.c; int n = l.h*l.w; int k = l.size*l.size*l.n; float *a = l.filters; float *b = l.col_image; float *c = state.delta + i*n*m; gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); } } } void update_deconvolutional_layer(deconvolutional_layer l, float learning_rate, float momentum, float decay) { int size = l.size*l.size*l.c*l.n; axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1); scal_cpu(l.n, momentum, l.bias_updates, 1); axpy_cpu(size, -decay, l.filters, 1, l.filter_updates, 1); axpy_cpu(size, learning_rate, l.filter_updates, 1, l.filters, 1); scal_cpu(size, momentum, l.filter_updates, 1); }