#include "network.h" #include "detection_layer.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" #include "box.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #endif char *voc_class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; void draw_yolo(image im, float *box, int side, int objectness, char *label, float thresh) { int classes = 20; int elems = 4+classes+objectness; int j; int r, c; for(r = 0; r < side; ++r){ for(c = 0; c < side; ++c){ j = (r*side + c) * elems; float scale = 1; if(objectness) scale = 1 - box[j++]; int class = max_index(box+j, classes); if(scale * box[j+class] > thresh){ int width = sqrt(scale*box[j+class])*5 + 1; printf("%f %s\n", scale * box[j+class], voc_class_names[class]); float red = get_color(0,class,classes); float green = get_color(1,class,classes); float blue = get_color(2,class,classes); j += classes; float x = box[j+0]; float y = box[j+1]; x = (x+c)/side; y = (y+r)/side; float w = box[j+2]; //*maxwidth; float h = box[j+3]; //*maxheight; h = h*h; w = w*w; int left = (x-w/2)*im.w; int right = (x+w/2)*im.w; int top = (y-h/2)*im.h; int bot = (y+h/2)*im.h; draw_box_width(im, left, top, right, bot, width, red, green, blue); } } } show_image(im, label); } void train_yolo(char *cfgfile, char *weightfile) { char *train_images = "/home/pjreddie/data/voc/test/train.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); data_seed = time(0); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } detection_layer layer = get_network_detection_layer(net); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 128; int i = net.seen/imgs; char **paths; list *plist = get_paths(train_images); int N = plist->size; paths = (char **)list_to_array(plist); if(i*imgs > N*80){ net.layers[net.n-1].joint = 1; net.layers[net.n-1].objectness = 0; } if(i*imgs > N*120){ net.layers[net.n-1].rescore = 1; } data train, buffer; int classes = layer.classes; int background = layer.objectness; int side = sqrt(get_detection_layer_locations(layer)); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.num_boxes = side; args.background = background; args.d = &buffer; args.type = DETECTION_DATA; pthread_t load_thread = load_data_in_thread(args); clock_t time; while(i*imgs < N*130){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); net.seen += imgs; if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images, epoch: %f\n", i, loss, avg_loss, sec(clock()-time), i*imgs, ((float)i)*imgs/N); if((i-1)*imgs <= N && i*imgs > N){ fprintf(stderr, "First stage done\n"); net.learning_rate *= 10; char buff[256]; sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); save_weights(net, buff); } if((i-1)*imgs <= 80*N && i*imgs > N*80){ fprintf(stderr, "Second stage done.\n"); net.learning_rate *= .1; char buff[256]; sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); save_weights(net, buff); net.layers[net.n-1].joint = 1; net.layers[net.n-1].objectness = 0; background = 0; pthread_join(load_thread, 0); free_data(buffer); args.background = background; load_thread = load_data_in_thread(args); } if((i-1)*imgs <= 120*N && i*imgs > N*120){ fprintf(stderr, "Third stage done.\n"); char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); net.layers[net.n-1].rescore = 1; save_weights(net, buff); } if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_rescore.weights", backup_directory, base); save_weights(net, buff); } void convert_yolo_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes) { int i,j; int per_box = 4+classes+(background || objectness); for (i = 0; i < num_boxes*num_boxes; ++i){ float scale = 1; if(objectness) scale = 1-predictions[i*per_box]; int offset = i*per_box+(background||objectness); for(j = 0; j < classes; ++j){ float prob = scale*predictions[offset+j]; probs[i][j] = (prob > thresh) ? prob : 0; } int row = i / num_boxes; int col = i % num_boxes; offset += classes; boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w; boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h; boxes[i].w = pow(predictions[offset + 2], 2) * w; boxes[i].h = pow(predictions[offset + 3], 2) * h; } } void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) { int i, j; for(i = 0; i < num_boxes*num_boxes; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for(j = 0; j < classes; ++j){ if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], xmin, ymin, xmax, ymax); } } } void validate_yolo(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); detection_layer layer = get_network_detection_layer(net); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "results/comp4_det_test_"; list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); char **paths = (char **)list_to_array(plist); int classes = layer.classes; int objectness = layer.objectness; int background = layer.background; int num_boxes = sqrt(get_detection_layer_locations(layer)); int j; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; snprintf(buff, 1024, "%s%s.txt", base, voc_class_names[j]); fps[j] = fopen(buff, "w"); } box *boxes = calloc(num_boxes*num_boxes, sizeof(box)); float **probs = calloc(num_boxes*num_boxes, sizeof(float *)); for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; int t; float thresh = .001; int nms = 1; float iou_thresh = .5; int nthreads = 8; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = {0}; args.w = net.w; args.h = net.h; args.type = IMAGE_DATA; for(t = 0; t < nthreads; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for(i = nthreads; i < m+nthreads; i += nthreads){ fprintf(stderr, "%d\n", i); for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for(t = 0; t < nthreads && i+t < m; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ char *path = paths[i+t-nthreads]; char *id = basecfg(path); float *X = val_resized[t].data; float *predictions = network_predict(net, X); int w = val[t].w; int h = val[t].h; convert_yolo_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes); if (nms) do_nms(boxes, probs, num_boxes*num_boxes, classes, iou_thresh); print_yolo_detections(fps, id, boxes, probs, num_boxes, classes, w, h); free(id); free_image(val[t]); free_image(val_resized[t]); } } fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); } void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } detection_layer layer = get_network_detection_layer(net); set_batch_network(&net, 1); srand(2222222); clock_t time; char input[256]; while(1){ if(filename){ strncpy(input, filename, 256); } else { printf("Enter Image Path: "); fflush(stdout); fgets(input, 256, stdin); strtok(input, "\n"); } image im = load_image_color(input,0,0); image sized = resize_image(im, net.w, net.h); float *X = sized.data; time=clock(); float *predictions = network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); draw_yolo(im, predictions, 7, layer.objectness, "predictions", thresh); free_image(im); free_image(sized); #ifdef OPENCV cvWaitKey(0); cvDestroyAllWindows(); #endif if (filename) break; } } void run_yolo(int argc, char **argv) { float thresh = find_float_arg(argc, argv, "-thresh", .2); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh); else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights); }