#include "local_layer.h" #include "utils.h" #include "im2col.h" #include "col2im.h" #include "blas.h" #include "gemm.h" #include #include int local_out_height(local_layer l) { int h = l.h; if (!l.pad) h -= l.size; else h -= 1; return h/l.stride + 1; } int local_out_width(local_layer l) { int w = l.w; if (!l.pad) w -= l.size; else w -= 1; return w/l.stride + 1; } local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) { int i; local_layer l = {0}; l.type = LOCAL; l.h = h; l.w = w; l.c = c; l.n = n; l.batch = batch; l.stride = stride; l.size = size; l.pad = pad; int out_h = local_out_height(l); int out_w = local_out_width(l); int locations = out_h*out_w; l.out_h = out_h; l.out_w = out_w; l.out_c = n; l.outputs = l.out_h * l.out_w * l.out_c; l.inputs = l.w * l.h * l.c; l.weights = calloc(c*n*size*size*locations, sizeof(float)); l.weight_updates = calloc(c*n*size*size*locations, sizeof(float)); l.biases = calloc(l.outputs, sizeof(float)); l.bias_updates = calloc(l.outputs, sizeof(float)); // float scale = 1./sqrt(size*size*c); float scale = sqrt(2./(size*size*c)); for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1,1); l.output = calloc(l.batch*out_h * out_w * n, sizeof(float)); l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float)); l.workspace_size = out_h*out_w*size*size*c; l.forward = forward_local_layer; l.backward = backward_local_layer; l.update = update_local_layer; #ifdef GPU l.forward_gpu = forward_local_layer_gpu; l.backward_gpu = backward_local_layer_gpu; l.update_gpu = update_local_layer_gpu; l.weights_gpu = cuda_make_array(l.weights, c*n*size*size*locations); l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size*locations); l.biases_gpu = cuda_make_array(l.biases, l.outputs); l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs); l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); #endif l.activation = activation; fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); return l; } void forward_local_layer(const local_layer l, network net) { int out_h = local_out_height(l); int out_w = local_out_width(l); int i, j; int locations = out_h * out_w; for(i = 0; i < l.batch; ++i){ copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1); } for(i = 0; i < l.batch; ++i){ float *input = net.input + i*l.w*l.h*l.c; im2col_cpu(input, l.c, l.h, l.w, l.size, l.stride, l.pad, net.workspace); float *output = l.output + i*l.outputs; for(j = 0; j < locations; ++j){ float *a = l.weights + j*l.size*l.size*l.c*l.n; float *b = net.workspace + j; float *c = output + j; int m = l.n; int n = 1; int k = l.size*l.size*l.c; gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations); } } activate_array(l.output, l.outputs*l.batch, l.activation); } void backward_local_layer(local_layer l, network net) { int i, j; int locations = l.out_w*l.out_h; gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); for(i = 0; i < l.batch; ++i){ axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1); } for(i = 0; i < l.batch; ++i){ float *input = net.input + i*l.w*l.h*l.c; im2col_cpu(input, l.c, l.h, l.w, l.size, l.stride, l.pad, net.workspace); for(j = 0; j < locations; ++j){ float *a = l.delta + i*l.outputs + j; float *b = net.workspace + j; float *c = l.weight_updates + j*l.size*l.size*l.c*l.n; int m = l.n; int n = l.size*l.size*l.c; int k = 1; gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n); } if(net.delta){ for(j = 0; j < locations; ++j){ float *a = l.weights + j*l.size*l.size*l.c*l.n; float *b = l.delta + i*l.outputs + j; float *c = net.workspace + j; int m = l.size*l.size*l.c; int n = 1; int k = l.n; gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations); } col2im_cpu(net.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, net.delta+i*l.c*l.h*l.w); } } } void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay) { int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); scal_cpu(l.outputs, momentum, l.bias_updates, 1); axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); scal_cpu(size, momentum, l.weight_updates, 1); } #ifdef GPU void forward_local_layer_gpu(const local_layer l, network net) { int out_h = local_out_height(l); int out_w = local_out_width(l); int i, j; int locations = out_h * out_w; for(i = 0; i < l.batch; ++i){ copy_ongpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1); } for(i = 0; i < l.batch; ++i){ float *input = net.input_gpu + i*l.w*l.h*l.c; im2col_ongpu(input, l.c, l.h, l.w, l.size, l.stride, l.pad, net.workspace); float *output = l.output_gpu + i*l.outputs; for(j = 0; j < locations; ++j){ float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n; float *b = net.workspace + j; float *c = output + j; int m = l.n; int n = 1; int k = l.size*l.size*l.c; gemm_ongpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations); } } activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); } void backward_local_layer_gpu(local_layer l, network net) { int i, j; int locations = l.out_w*l.out_h; gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); for(i = 0; i < l.batch; ++i){ axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1); } for(i = 0; i < l.batch; ++i){ float *input = net.input_gpu + i*l.w*l.h*l.c; im2col_ongpu(input, l.c, l.h, l.w, l.size, l.stride, l.pad, net.workspace); for(j = 0; j < locations; ++j){ float *a = l.delta_gpu + i*l.outputs + j; float *b = net.workspace + j; float *c = l.weight_updates_gpu + j*l.size*l.size*l.c*l.n; int m = l.n; int n = l.size*l.size*l.c; int k = 1; gemm_ongpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n); } if(net.delta_gpu){ for(j = 0; j < locations; ++j){ float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n; float *b = l.delta_gpu + i*l.outputs + j; float *c = net.workspace + j; int m = l.size*l.size*l.c; int n = 1; int k = l.n; gemm_ongpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations); } col2im_ongpu(net.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, net.delta_gpu+i*l.c*l.h*l.w); } } } void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay) { int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1); axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); axpy_ongpu(size, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); scal_ongpu(size, momentum, l.weight_updates_gpu, 1); } void pull_local_layer(local_layer l) { int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; cuda_pull_array(l.weights_gpu, l.weights, size); cuda_pull_array(l.biases_gpu, l.biases, l.outputs); } void push_local_layer(local_layer l) { int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; cuda_push_array(l.weights_gpu, l.weights, size); cuda_push_array(l.biases_gpu, l.biases, l.outputs); } #endif