#include "detection_layer.h" #include "activations.h" #include "softmax_layer.h" #include "blas.h" #include "box.h" #include "cuda.h" #include "utils.h" #include #include #include int get_detection_layer_locations(detection_layer l) { return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness)); } int get_detection_layer_output_size(detection_layer l) { return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords); } detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness) { detection_layer l = {0}; l.type = DETECTION; l.batch = batch; l.inputs = inputs; l.classes = classes; l.coords = coords; l.rescore = rescore; l.objectness = objectness; l.background = background; l.joint = joint; l.cost = calloc(1, sizeof(float)); l.does_cost=1; int outputs = get_detection_layer_output_size(l); l.outputs = outputs; l.output = calloc(batch*outputs, sizeof(float)); l.delta = calloc(batch*outputs, sizeof(float)); #ifdef GPU l.output_gpu = cuda_make_array(l.output, batch*outputs); l.delta_gpu = cuda_make_array(l.delta, batch*outputs); #endif fprintf(stderr, "Detection Layer\n"); srand(0); return l; } void forward_detection_layer(const detection_layer l, network_state state) { int in_i = 0; int out_i = 0; int locations = get_detection_layer_locations(l); int i,j; for(i = 0; i < l.batch*locations; ++i){ int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]); float scale = 1; if(l.joint) scale = state.input[in_i++]; else if(l.objectness){ l.output[out_i++] = 1-state.input[in_i++]; scale = mask; } else if(l.background) l.output[out_i++] = scale*state.input[in_i++]; for(j = 0; j < l.classes; ++j){ l.output[out_i++] = scale*state.input[in_i++]; } if(l.objectness){ }else if(l.background){ softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background); activate_array(state.input+in_i, l.coords, LOGISTIC); } for(j = 0; j < l.coords; ++j){ l.output[out_i++] = mask*state.input[in_i++]; } } float avg_iou = 0; int count = 0; if(l.does_cost && state.train){ *(l.cost) = 0; int size = get_detection_layer_output_size(l) * l.batch; memset(l.delta, 0, size * sizeof(float)); for (i = 0; i < l.batch*locations; ++i) { int classes = (l.objectness || l.background)+l.classes; int offset = i*(classes+l.coords); for (j = offset; j < offset+classes; ++j) { *(l.cost) += pow(state.truth[j] - l.output[j], 2); l.delta[j] = state.truth[j] - l.output[j]; if(l.background && j == offset) l.delta[j] *= .1; } box truth; truth.x = state.truth[j+0]/7; truth.y = state.truth[j+1]/7; truth.w = pow(state.truth[j+2], 2); truth.h = pow(state.truth[j+3], 2); box out; out.x = l.output[j+0]/7; out.y = l.output[j+1]/7; out.w = pow(l.output[j+2], 2); out.h = pow(l.output[j+3], 2); if(!(truth.w*truth.h)) continue; float iou = box_iou(out, truth); avg_iou += iou; ++count; *(l.cost) += pow((1-iou), 2); l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]); l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]); l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]); l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]); if(l.rescore){ if(l.objectness){ state.truth[offset] = iou; l.delta[offset] = state.truth[offset] - l.output[offset]; } else{ for (j = offset; j < offset+classes; ++j) { if(state.truth[j]) state.truth[j] = iou; l.delta[j] = state.truth[j] - l.output[j]; } } } } printf("Avg IOU: %f\n", avg_iou/count); } } void backward_detection_layer(const detection_layer l, network_state state) { int locations = get_detection_layer_locations(l); int i,j; int in_i = 0; int out_i = 0; for(i = 0; i < l.batch*locations; ++i){ float scale = 1; float latent_delta = 0; if(l.joint) scale = state.input[in_i++]; else if (l.objectness) state.delta[in_i++] += -l.delta[out_i++]; else if (l.background) state.delta[in_i++] += scale*l.delta[out_i++]; for(j = 0; j < l.classes; ++j){ latent_delta += state.input[in_i]*l.delta[out_i]; state.delta[in_i++] += scale*l.delta[out_i++]; } if (l.objectness) { }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i); for (j = 0; j < l.coords; ++j){ state.delta[in_i++] += l.delta[out_i++]; } if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] += latent_delta; } } #ifdef GPU void forward_detection_layer_gpu(const detection_layer l, network_state state) { int outputs = get_detection_layer_output_size(l); float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(l.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); } cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); network_state cpu_state; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_detection_layer(l, cpu_state); cuda_push_array(l.output_gpu, l.output, l.batch*outputs); cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs); free(cpu_state.input); if(cpu_state.truth) free(cpu_state.truth); } void backward_detection_layer_gpu(detection_layer l, network_state state) { int outputs = get_detection_layer_output_size(l); float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(l.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); } network_state cpu_state; cpu_state.train = state.train; cpu_state.input = in_cpu; cpu_state.truth = truth_cpu; cpu_state.delta = delta_cpu; cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); cuda_pull_array(state.delta, delta_cpu, l.batch*l.inputs); cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs); backward_detection_layer(l, cpu_state); cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs); if (truth_cpu) free(truth_cpu); free(in_cpu); free(delta_cpu); } #endif