#include "dropout_layer.h" #include "utils.h" #include "cuda.h" #include #include dropout_layer make_dropout_layer(int batch, int inputs, float probability) { dropout_layer l = {0}; l.type = DROPOUT; l.probability = probability; l.inputs = inputs; l.outputs = inputs; l.batch = batch; l.rand = calloc(inputs*batch, sizeof(float)); l.scale = 1./(1.-probability); l.forward = forward_dropout_layer; l.backward = backward_dropout_layer; #ifdef GPU l.forward_gpu = forward_dropout_layer_gpu; l.backward_gpu = backward_dropout_layer_gpu; l.rand_gpu = cuda_make_array(l.rand, inputs*batch); #endif fprintf(stderr, "dropout p = %.2f %4d -> %4d\n", probability, inputs, inputs); return l; } void resize_dropout_layer(dropout_layer *l, int inputs) { l->rand = realloc(l->rand, l->inputs*l->batch*sizeof(float)); #ifdef GPU cuda_free(l->rand_gpu); l->rand_gpu = cuda_make_array(l->rand, inputs*l->batch); #endif } void forward_dropout_layer(dropout_layer l, network net) { int i; if (!net.train) return; for(i = 0; i < l.batch * l.inputs; ++i){ float r = rand_uniform(0, 1); l.rand[i] = r; if(r < l.probability) net.input[i] = 0; else net.input[i] *= l.scale; } } void backward_dropout_layer(dropout_layer l, network net) { int i; if(!net.delta) return; for(i = 0; i < l.batch * l.inputs; ++i){ float r = l.rand[i]; if(r < l.probability) net.delta[i] = 0; else net.delta[i] *= l.scale; } }