#include "darknet.h" static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); char *backup_directory = option_find_str(options, "backup", "/backup/"); srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network **nets = calloc(ngpus, sizeof(network)); srand(time(0)); int seed = rand(); int i; for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = load_network(cfgfile, weightfile, clear); nets[i]->learning_rate *= ngpus; } srand(time(0)); network *net = nets[0]; int imgs = net->batch * net->subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); data train, buffer; layer l = net->layers[net->n - 1]; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = get_base_args(net); args.coords = l.coords; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = l.max_boxes; args.d = &buffer; args.type = DETECTION_DATA; //args.type = INSTANCE_DATA; args.threads = 64; pthread_t load_thread = load_data(args); double time; int count = 0; //while(i*imgs < N*120){ while(get_current_batch(net) < net->max_batches){ if(l.random && count++%10 == 0){ printf("Resizing\n"); int dim = (rand() % 10 + 10) * 32; if (get_current_batch(net)+200 > net->max_batches) dim = 608; //int dim = (rand() % 4 + 16) * 32; printf("%d\n", dim); args.w = dim; args.h = dim; pthread_join(load_thread, 0); train = buffer; free_data(train); load_thread = load_data(args); for(i = 0; i < ngpus; ++i){ resize_network(nets[i], dim, dim); } net = nets[0]; } time=what_time_is_it_now(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); /* int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); if(!b.x) break; printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); } */ /* int zz; for(zz = 0; zz < train.X.cols; ++zz){ image im = float_to_image(net->w, net->h, 3, train.X.vals[zz]); int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[zz] + k*5, 1); printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); draw_bbox(im, b, 1, 1,0,0); } show_image(im, "truth11"); cvWaitKey(0); save_image(im, "truth11"); } */ printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); time=what_time_is_it_now(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; i = get_current_batch(net); printf("%ld: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, i*imgs); if(i%100==0){ #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } if(i%10000==0 || (i < 1000 && i%100 == 0)){ #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); } static int get_coco_image_id(char *filename) { char *p = strrchr(filename, '_'); return atoi(p+1); } static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h) { int i, j; int image_id = get_coco_image_id(image_path); for(i = 0; i < num_boxes; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; float bx = xmin; float by = ymin; float bw = xmax - xmin; float bh = ymax - ymin; for(j = 0; j < classes; ++j){ if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); } } } void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) { int i, j; for(i = 0; i < total; ++i){ float xmin = boxes[i].x - boxes[i].w/2. + 1; float xmax = boxes[i].x + boxes[i].w/2. + 1; float ymin = boxes[i].y - boxes[i].h/2. + 1; float ymax = boxes[i].y + boxes[i].h/2. + 1; if (xmin < 1) xmin = 1; if (ymin < 1) ymin = 1; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for(j = 0; j < classes; ++j){ if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], xmin, ymin, xmax, ymax); } } } void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h) { int i, j; for(i = 0; i < total; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for(j = 0; j < classes; ++j){ int class = j; if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class], xmin, ymin, xmax, ymax); } } } void validate_detector_flip(char *datacfg, char *cfgfile, char *weightfile, char *outfile) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.list"); char *name_list = option_find_str(options, "names", "data/names.list"); char *prefix = option_find_str(options, "results", "results"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 2); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); srand(time(0)); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net->layers[net->n-1]; int classes = l.classes; char buff[1024]; char *type = option_find_str(options, "eval", "voc"); FILE *fp = 0; FILE **fps = 0; int coco = 0; int imagenet = 0; if(0==strcmp(type, "coco")){ if(!outfile) outfile = "coco_results"; snprintf(buff, 1024, "%s/%s.json", prefix, outfile); fp = fopen(buff, "w"); fprintf(fp, "[\n"); coco = 1; } else if(0==strcmp(type, "imagenet")){ if(!outfile) outfile = "imagenet-detection"; snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); fp = fopen(buff, "w"); imagenet = 1; classes = 200; } else { if(!outfile) outfile = "comp4_det_test_"; fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); fps[j] = fopen(buff, "w"); } } box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *)); int m = plist->size; int i=0; int t; float thresh = .005; float nms = .45; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); image input = make_image(net->w, net->h, net->c*2); load_args args = {0}; args.w = net->w; args.h = net->h; //args.type = IMAGE_DATA; args.type = LETTERBOX_DATA; for(t = 0; t < nthreads; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } double start = what_time_is_it_now(); for(i = nthreads; i < m+nthreads; i += nthreads){ fprintf(stderr, "%d\n", i); for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for(t = 0; t < nthreads && i+t < m; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ char *path = paths[i+t-nthreads]; char *id = basecfg(path); copy_cpu(net->w*net->h*net->c, val_resized[t].data, 1, input.data, 1); flip_image(val_resized[t]); copy_cpu(net->w*net->h*net->c, val_resized[t].data, 1, input.data + net->w*net->h*net->c, 1); network_predict(net, input.data); int w = val[t].w; int h = val[t].h; get_region_boxes(l, w, h, net->w, net->h, thresh, probs, boxes, 0, 0, map, .5, 0); if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); if (coco){ print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); } else if (imagenet){ print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h); } else { print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); } free(id); free_image(val[t]); free_image(val_resized[t]); } } for(j = 0; j < classes; ++j){ if(fps) fclose(fps[j]); } if(coco){ fseek(fp, -2, SEEK_CUR); fprintf(fp, "\n]\n"); fclose(fp); } fprintf(stderr, "Total Detection Time: %f Seconds\n", what_time_is_it_now() - start); } void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.list"); char *name_list = option_find_str(options, "names", "data/names.list"); char *prefix = option_find_str(options, "results", "results"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); srand(time(0)); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net->layers[net->n-1]; int classes = l.classes; char buff[1024]; char *type = option_find_str(options, "eval", "voc"); FILE *fp = 0; FILE **fps = 0; int coco = 0; int imagenet = 0; if(0==strcmp(type, "coco")){ if(!outfile) outfile = "coco_results"; snprintf(buff, 1024, "%s/%s.json", prefix, outfile); fp = fopen(buff, "w"); fprintf(fp, "[\n"); coco = 1; } else if(0==strcmp(type, "imagenet")){ if(!outfile) outfile = "imagenet-detection"; snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); fp = fopen(buff, "w"); imagenet = 1; classes = 200; } else { if(!outfile) outfile = "comp4_det_test_"; fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); fps[j] = fopen(buff, "w"); } } box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *)); int m = plist->size; int i=0; int t; float thresh = .005; float nms = .45; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = {0}; args.w = net->w; args.h = net->h; //args.type = IMAGE_DATA; args.type = LETTERBOX_DATA; for(t = 0; t < nthreads; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } double start = what_time_is_it_now(); for(i = nthreads; i < m+nthreads; i += nthreads){ fprintf(stderr, "%d\n", i); for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for(t = 0; t < nthreads && i+t < m; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ char *path = paths[i+t-nthreads]; char *id = basecfg(path); float *X = val_resized[t].data; network_predict(net, X); int w = val[t].w; int h = val[t].h; get_region_boxes(l, w, h, net->w, net->h, thresh, probs, boxes, 0, 0, map, .5, 0); if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); if (coco){ print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); } else if (imagenet){ print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h); } else { print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); } free(id); free_image(val[t]); free_image(val_resized[t]); } } for(j = 0; j < classes; ++j){ if(fps) fclose(fps[j]); } if(coco){ fseek(fp, -2, SEEK_CUR); fprintf(fp, "\n]\n"); fclose(fp); } fprintf(stderr, "Total Detection Time: %f Seconds\n", what_time_is_it_now() - start); } void validate_detector_recall(char *cfgfile, char *weightfile) { network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); srand(time(0)); list *plist = get_paths("data/coco_val_5k.list"); char **paths = (char **)list_to_array(plist); layer l = net->layers[net->n-1]; int classes = l.classes; int j, k; box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *)); int m = plist->size; int i=0; float thresh = .001; float iou_thresh = .5; float nms = .4; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net->w, net->h); char *id = basecfg(path); network_predict(net, sized.data); get_region_boxes(l, sized.w, sized.h, net->w, net->h, thresh, probs, boxes, 0, 1, 0, .5, 1); if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms); char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < l.w*l.h*l.n; ++k){ if(probs[k][0] > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < l.w*l.h*l.n; ++k){ float iou = box_iou(boxes[k], t); if(probs[k][0] > thresh && iou > best_iou){ best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); free(id); free_image(orig); free_image(sized); } } void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen) { list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); image **alphabet = load_alphabet(); network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); double time; char buff[256]; char *input = buff; int j; float nms=.3; while(1){ if(filename){ strncpy(input, filename, 256); } else { printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input,0,0); image sized = letterbox_image(im, net->w, net->h); //image sized = resize_image(im, net->w, net->h); //image sized2 = resize_max(im, net->w); //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h); //resize_network(net, sized.w, sized.h); layer l = net->layers[net->n-1]; box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *)); float **masks = 0; if (l.coords > 4){ masks = calloc(l.w*l.h*l.n, sizeof(float*)); for(j = 0; j < l.w*l.h*l.n; ++j) masks[j] = calloc(l.coords-4, sizeof(float *)); } float *X = sized.data; time=what_time_is_it_now(); network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time); get_region_boxes(l, im.w, im.h, net->w, net->h, thresh, probs, boxes, masks, 0, 0, hier_thresh, 1); if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); //else if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, masks, names, alphabet, l.classes); if(outfile){ save_image(im, outfile); } else{ save_image(im, "predictions"); #ifdef OPENCV cvNamedWindow("predictions", CV_WINDOW_NORMAL); if(fullscreen){ cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN); } show_image(im, "predictions"); cvWaitKey(0); cvDestroyAllWindows(); #endif } free_image(im); free_image(sized); free(boxes); free_ptrs((void **)probs, l.w*l.h*l.n); if (filename) break; } } void run_detector(int argc, char **argv) { char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .24); float hier_thresh = find_float_arg(argc, argv, "-hier", .5); int cam_index = find_int_arg(argc, argv, "-c", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0); int avg = find_int_arg(argc, argv, "-avg", 3); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); char *outfile = find_char_arg(argc, argv, "-out", 0); int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int clear = find_arg(argc, argv, "-clear"); int fullscreen = find_arg(argc, argv, "-fullscreen"); int width = find_int_arg(argc, argv, "-w", 0); int height = find_int_arg(argc, argv, "-h", 0); int fps = find_int_arg(argc, argv, "-fps", 0); char *datacfg = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, outfile, fullscreen); else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); else if(0==strcmp(argv[2], "valid2")) validate_detector_flip(datacfg, cfg, weights, outfile); else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); else if(0==strcmp(argv[2], "demo")) { list *options = read_data_cfg(datacfg); int classes = option_find_int(options, "classes", 20); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, avg, hier_thresh, width, height, fps, fullscreen); } }