#include "reorg_layer.h" #include "cuda.h" #include "blas.h" #include layer make_reorg_layer(int batch, int h, int w, int c, int stride, int reverse) { layer l = {0}; l.type = REORG; l.batch = batch; l.stride = stride; l.h = h; l.w = w; l.c = c; if(reverse){ l.out_w = w*stride; l.out_h = h*stride; l.out_c = c/(stride*stride); }else{ l.out_w = w/stride; l.out_h = h/stride; l.out_c = c*(stride*stride); } fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c); l.outputs = l.out_h * l.out_w * l.out_c; l.inputs = h*w*c; int output_size = l.out_h * l.out_w * l.out_c * batch; l.output = calloc(output_size, sizeof(float)); l.delta = calloc(output_size, sizeof(float)); l.forward = forward_reorg_layer; l.backward = backward_reorg_layer; #ifdef GPU l.forward_gpu = forward_reorg_layer_gpu; l.backward_gpu = backward_reorg_layer_gpu; l.output_gpu = cuda_make_array(l.output, output_size); l.delta_gpu = cuda_make_array(l.delta, output_size); #endif return l; } void resize_reorg_layer(layer *l, int w, int h) { int stride = l->stride; l->h = h; l->w = w; l->out_w = w*stride; l->out_h = h*stride; l->outputs = l->out_h * l->out_w * l->out_c; l->inputs = l->outputs; int output_size = l->outputs * l->batch; l->output = realloc(l->output, output_size * sizeof(float)); l->delta = realloc(l->delta, output_size * sizeof(float)); #ifdef GPU cuda_free(l->output_gpu); cuda_free(l->delta_gpu); l->output_gpu = cuda_make_array(l->output, output_size); l->delta_gpu = cuda_make_array(l->delta, output_size); #endif } void forward_reorg_layer(const layer l, network_state state) { int b,i,j,k; for(b = 0; b < l.batch; ++b){ for(k = 0; k < l.c; ++k){ for(j = 0; j < l.h; ++j){ for(i = 0; i < l.w; ++i){ int in_index = i + l.w*(j + l.h*(k + l.c*b)); int c2 = k % l.out_c; int offset = k / l.out_c; int w2 = i*l.stride + offset % l.stride; int h2 = j*l.stride + offset / l.stride; int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b)); l.output[out_index] = state.input[in_index]; } } } } } void backward_reorg_layer(const layer l, network_state state) { int b,i,j,k; for(b = 0; b < l.batch; ++b){ for(k = 0; k < l.c; ++k){ for(j = 0; j < l.h; ++j){ for(i = 0; i < l.w; ++i){ int in_index = i + l.w*(j + l.h*(k + l.c*b)); int c2 = k % l.out_c; int offset = k / l.out_c; int w2 = i*l.stride + offset % l.stride; int h2 = j*l.stride + offset / l.stride; int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b)); state.delta[in_index] = l.delta[out_index]; } } } } } #ifdef GPU void forward_reorg_layer_gpu(layer l, network_state state) { if(l.reverse){ reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu); }else { reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 0, l.output_gpu); } } void backward_reorg_layer_gpu(layer l, network_state state) { if(l.reverse){ reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta); }else{ reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta); } } #endif