#include #include #include #include "parser.h" #include "utils.h" #include "cuda.h" #include "blas.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #endif extern void run_imagenet(int argc, char **argv); extern void run_yolo(int argc, char **argv); extern void run_coco(int argc, char **argv); extern void run_writing(int argc, char **argv); extern void run_captcha(int argc, char **argv); extern void run_nightmare(int argc, char **argv); extern void run_dice(int argc, char **argv); void change_rate(char *filename, float scale, float add) { // Ready for some weird shit?? FILE *fp = fopen(filename, "r+b"); if(!fp) file_error(filename); float rate = 0; fread(&rate, sizeof(float), 1, fp); printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add); rate = rate*scale + add; fseek(fp, 0, SEEK_SET); fwrite(&rate, sizeof(float), 1, fp); fclose(fp); } void average(int argc, char *argv[]) { char *cfgfile = argv[2]; char *outfile = argv[3]; gpu_index = -1; network net = parse_network_cfg(cfgfile); network sum = parse_network_cfg(cfgfile); char *weightfile = argv[4]; load_weights(&sum, weightfile); int i, j; int n = argc - 5; for(i = 0; i < n; ++i){ weightfile = argv[i+5]; load_weights(&net, weightfile); for(j = 0; j < net.n; ++j){ layer l = net.layers[j]; layer out = sum.layers[j]; if(l.type == CONVOLUTIONAL){ int num = l.n*l.c*l.size*l.size; axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); axpy_cpu(num, 1, l.filters, 1, out.filters, 1); } if(l.type == CONNECTED){ axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); } } } n = n+1; for(j = 0; j < net.n; ++j){ layer l = sum.layers[j]; if(l.type == CONVOLUTIONAL){ int num = l.n*l.c*l.size*l.size; scal_cpu(l.n, 1./n, l.biases, 1); scal_cpu(num, 1./n, l.filters, 1); } if(l.type == CONNECTED){ scal_cpu(l.outputs, 1./n, l.biases, 1); scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); } } save_weights(sum, outfile); } void partial(char *cfgfile, char *weightfile, char *outfile, int max) { gpu_index = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights_upto(&net, weightfile, max); } net.seen = 0; save_weights_upto(net, outfile, max); } #include "convolutional_layer.h" void rescale_net(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int i; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ rescale_filters(l, 2, -.5); break; } } save_weights(net, outfile); } void rgbgr_net(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int i; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ rgbgr_filters(l); break; } } save_weights(net, outfile); } void visualize(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } visualize_network(net); #ifdef OPENCV cvWaitKey(0); #endif } int main(int argc, char **argv) { //test_resize("data/bad.jpg"); //test_box(); //test_convolutional_layer(); if(argc < 2){ fprintf(stderr, "usage: %s \n", argv[0]); return 0; } gpu_index = find_int_arg(argc, argv, "-i", 0); if(find_arg(argc, argv, "-nogpu")) gpu_index = -1; #ifndef GPU gpu_index = -1; #else if(gpu_index >= 0){ cudaSetDevice(gpu_index); } #endif if(0==strcmp(argv[1], "imagenet")){ run_imagenet(argc, argv); } else if (0 == strcmp(argv[1], "average")){ average(argc, argv); } else if (0 == strcmp(argv[1], "yolo")){ run_yolo(argc, argv); } else if (0 == strcmp(argv[1], "coco")){ run_coco(argc, argv); } else if (0 == strcmp(argv[1], "dice")){ run_dice(argc, argv); } else if (0 == strcmp(argv[1], "writing")){ run_writing(argc, argv); } else if (0 == strcmp(argv[1], "test")){ test_resize(argv[2]); } else if (0 == strcmp(argv[1], "captcha")){ run_captcha(argc, argv); } else if (0 == strcmp(argv[1], "nightmare")){ run_nightmare(argc, argv); } else if (0 == strcmp(argv[1], "change")){ change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0); } else if (0 == strcmp(argv[1], "rgbgr")){ rgbgr_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "rescale")){ rescale_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "partial")){ partial(argv[2], argv[3], argv[4], atoi(argv[5])); } else if (0 == strcmp(argv[1], "visualize")){ visualize(argv[2], (argc > 3) ? argv[3] : 0); } else if (0 == strcmp(argv[1], "imtest")){ test_resize(argv[2]); } else { fprintf(stderr, "Not an option: %s\n", argv[1]); } return 0; }