#include "network.h" #include "utils.h" #include "parser.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #endif void train_imagenet(char *cfgfile, char *weightfile) { data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); char *backup_directory = "/home/pjreddie/backup/"; printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; char **labels = get_labels("data/inet.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; pthread_t load_thread; data train; data buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = 1000; args.n = imgs; args.m = N; args.labels = labels; args.d = &buffer; args.type = CLASSIFICATION_DATA; load_thread = load_data_in_thread(args); int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); free_data(train); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_data(buffer); free_network(net); free_ptrs((void**)labels, 1000); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); } void validate_imagenet(char *filename, char *weightfile) { int i = 0; network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); char **labels = get_labels("data/inet.labels.list"); //list *plist = get_paths("data/inet.suppress.list"); list *plist = get_paths("data/inet.val.list"); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; float avg_acc = 0; float avg_top5 = 0; int splits = 50; int num = (i+1)*m/splits - i*m/splits; data val, buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = 1000; args.n = num; args.m = 0; args.labels = labels; args.d = &buffer; args.type = CLASSIFICATION_DATA; pthread_t load_thread = load_data_in_thread(args); for(i = 1; i <= splits; ++i){ time=clock(); pthread_join(load_thread, 0); val = buffer; num = (i+1)*m/splits - i*m/splits; char **part = paths+(i*m/splits); if(i != splits){ args.paths = part; load_thread = load_data_in_thread(args); } printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); time=clock(); float *acc = network_accuracies(net, val, 5); avg_acc += acc[0]; avg_top5 += acc[1]; printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows); free_data(val); } } void test_imagenet(char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); int i = 0; char **names = get_labels("data/shortnames.txt"); clock_t time; int indexes[10]; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 256, 256); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); top_predictions(net, 10, indexes); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); for(i = 0; i < 10; ++i){ int index = indexes[i]; printf("%s: %f\n", names[index], predictions[index]); } free_image(im); if (filename) break; } } void run_imagenet(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights, filename); else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights); } /* void train_imagenet_distributed(char *address) { float avg_loss = 1; srand(time(0)); network net = parse_network_cfg("cfg/net.cfg"); set_learning_network(&net, 0, 1, 0); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch; int i = 0; char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; data train, buffer; pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); while(1){ i += 1; time=clock(); client_update(net, address); printf("Updated: %lf seconds\n", sec(clock()-time)); time=clock(); pthread_join(load_thread, 0); train = buffer; normalize_data_rows(train); load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); free_data(train); } } */