#include "darknet.h" void train_cifar(char *cfgfile, char *weightfile) { srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); char *backup_directory = "/home/pjreddie/backup/"; int classes = 10; int N = 50000; char **labels = get_labels("data/cifar/labels.txt"); int epoch = (*net.seen)/N; data train = load_all_cifar10(); while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ clock_t time=clock(); float loss = train_network_sgd(net, train, 1); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.95 + loss*.05; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free_ptrs((void**)labels, classes); free(base); free_data(train); } void train_cifar_distill(char *cfgfile, char *weightfile) { srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); char *backup_directory = "/home/pjreddie/backup/"; int classes = 10; int N = 50000; char **labels = get_labels("data/cifar/labels.txt"); int epoch = (*net.seen)/N; data train = load_all_cifar10(); matrix soft = csv_to_matrix("results/ensemble.csv"); float weight = .9; scale_matrix(soft, weight); scale_matrix(train.y, 1. - weight); matrix_add_matrix(soft, train.y); while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ clock_t time=clock(); float loss = train_network_sgd(net, train, 1); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.95 + loss*.05; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free_ptrs((void**)labels, classes); free(base); free_data(train); } void test_cifar_multi(char *filename, char *weightfile) { network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(time(0)); float avg_acc = 0; data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); int i; for(i = 0; i < test.X.rows; ++i){ image im = float_to_image(32, 32, 3, test.X.vals[i]); float pred[10] = {0}; float *p = network_predict(net, im.data); axpy_cpu(10, 1, p, 1, pred, 1); flip_image(im); p = network_predict(net, im.data); axpy_cpu(10, 1, p, 1, pred, 1); int index = max_index(pred, 10); int class = max_index(test.y.vals[i], 10); if(index == class) avg_acc += 1; free_image(im); printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1)); } } void test_cifar(char *filename, char *weightfile) { network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); clock_t time; float avg_acc = 0; float avg_top5 = 0; data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); time=clock(); float *acc = network_accuracies(net, test, 2); avg_acc += acc[0]; avg_top5 += acc[1]; printf("top1: %f, %lf seconds, %d images\n", avg_acc, sec(clock()-time), test.X.rows); free_data(test); } void extract_cifar() { char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"}; int i; data train = load_all_cifar10(); data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); for(i = 0; i < train.X.rows; ++i){ image im = float_to_image(32, 32, 3, train.X.vals[i]); int class = max_index(train.y.vals[i], 10); char buff[256]; sprintf(buff, "data/cifar/train/%d_%s",i,labels[class]); save_image_png(im, buff); } for(i = 0; i < test.X.rows; ++i){ image im = float_to_image(32, 32, 3, test.X.vals[i]); int class = max_index(test.y.vals[i], 10); char buff[256]; sprintf(buff, "data/cifar/test/%d_%s",i,labels[class]); save_image_png(im, buff); } } void test_cifar_csv(char *filename, char *weightfile) { network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); matrix pred = network_predict_data(net, test); int i; for(i = 0; i < test.X.rows; ++i){ image im = float_to_image(32, 32, 3, test.X.vals[i]); flip_image(im); } matrix pred2 = network_predict_data(net, test); scale_matrix(pred, .5); scale_matrix(pred2, .5); matrix_add_matrix(pred2, pred); matrix_to_csv(pred); fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1)); free_data(test); } void test_cifar_csvtrain(char *filename, char *weightfile) { network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); data test = load_all_cifar10(); matrix pred = network_predict_data(net, test); int i; for(i = 0; i < test.X.rows; ++i){ image im = float_to_image(32, 32, 3, test.X.vals[i]); flip_image(im); } matrix pred2 = network_predict_data(net, test); scale_matrix(pred, .5); scale_matrix(pred2, .5); matrix_add_matrix(pred2, pred); matrix_to_csv(pred); fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1)); free_data(test); } void eval_cifar_csv() { data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); matrix pred = csv_to_matrix("results/combined.csv"); fprintf(stderr, "%d %d\n", pred.rows, pred.cols); fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1)); free_data(test); free_matrix(pred); } void run_cifar(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights); else if(0==strcmp(argv[2], "extract")) extract_cifar(); else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights); else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights); else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights); else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights); else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights); else if(0==strcmp(argv[2], "eval")) eval_cifar_csv(); }