#include #include #include "network.h" #include "image.h" #include "data.h" #include "utils.h" #include "crop_layer.h" #include "connected_layer.h" #include "convolutional_layer.h" #include "maxpool_layer.h" #include "cost_layer.h" #include "normalization_layer.h" #include "freeweight_layer.h" #include "softmax_layer.h" #include "dropout_layer.h" #ifdef GPU void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train) { //printf("start\n"); int i; for(i = 0; i < net.n; ++i){ //clock_t time = clock(); if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; forward_convolutional_layer_gpu(layer, input); input = layer.output_cl; } else if(net.types[i] == COST){ cost_layer layer = *(cost_layer *)net.layers[i]; forward_cost_layer_gpu(layer, input, truth); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; forward_connected_layer_gpu(layer, input); input = layer.output_cl; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; forward_maxpool_layer_gpu(layer, input); input = layer.output_cl; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; forward_softmax_layer_gpu(layer, input); input = layer.output_cl; } //printf("%d %f\n", i, sec(clock()-time)); /* else if(net.types[i] == CROP){ crop_layer layer = *(crop_layer *)net.layers[i]; forward_crop_layer(layer, input); input = layer.output; } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; forward_normalization_layer(layer, input); input = layer.output; } */ } } void backward_network_gpu(network net, cl_mem input) { int i; cl_mem prev_input; cl_mem prev_delta; for(i = net.n-1; i >= 0; --i){ //clock_t time = clock(); if(i == 0){ prev_input = input; prev_delta = 0; }else{ prev_input = get_network_output_cl_layer(net, i-1); prev_delta = get_network_delta_cl_layer(net, i-1); } if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; backward_convolutional_layer_gpu(layer, prev_delta); } else if(net.types[i] == COST){ cost_layer layer = *(cost_layer *)net.layers[i]; backward_cost_layer_gpu(layer, prev_input, prev_delta); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; backward_connected_layer_gpu(layer, prev_input, prev_delta); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; backward_maxpool_layer_gpu(layer, prev_delta); } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; backward_softmax_layer_gpu(layer, prev_delta); } //printf("back: %d %f\n", i, sec(clock()-time)); } } void update_network_gpu(network net) { int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; update_convolutional_layer_gpu(layer); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; update_connected_layer_gpu(layer); } } } cl_mem get_network_output_cl_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.output_cl; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.output_cl; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.output_cl; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.output_cl; } return 0; } cl_mem get_network_delta_cl_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.delta_cl; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.delta_cl; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.delta_cl; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.delta_cl; } return 0; } float train_network_datum_gpu(network net, float *x, float *y) { int x_size = get_network_input_size(net)*net.batch; int y_size = get_network_output_size(net)*net.batch; //clock_t time = clock(); if(!*net.input_cl){ *net.input_cl = cl_make_array(x, x_size); *net.truth_cl = cl_make_array(y, y_size); }else{ cl_write_array(*net.input_cl, x, x_size); cl_write_array(*net.truth_cl, y, y_size); } //printf("trans %f\n", sec(clock()-time)); //time = clock(); forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1); //printf("forw %f\n", sec(clock()-time)); //time = clock(); backward_network_gpu(net, *net.input_cl); //printf("back %f\n", sec(clock()-time)); //time = clock(); update_network_gpu(net); float error = get_network_cost(net); //printf("updt %f\n", sec(clock()-time)); //time = clock(); return error; } float train_network_sgd_gpu(network net, data d, int n) { int batch = net.batch; float *X = calloc(batch*d.X.cols, sizeof(float)); float *y = calloc(batch*d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ get_random_batch(d, batch, X, y); float err = train_network_datum_gpu(net, X, y); sum += err; } free(X); free(y); return (float)sum/(n*batch); } float train_network_data_gpu(network net, data d, int n) { int batch = net.batch; float *X = calloc(batch*d.X.cols, sizeof(float)); float *y = calloc(batch*d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ get_next_batch(d, batch, i*batch, X, y); float err = train_network_datum_gpu(net, X, y); sum += err; } free(X); free(y); return (float)sum/(n*batch); } float *get_network_output_layer_gpu(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; pull_softmax_layer_output(layer); return layer.output; } return 0; } float *get_network_output_gpu(network net) { int i; for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; return get_network_output_layer_gpu(net, i); } float *network_predict_gpu(network net, float *input) { int size = get_network_input_size(net) * net.batch; cl_mem input_cl = cl_make_array(input, size); forward_network_gpu(net, input_cl, 0, 0); float *out = get_network_output_gpu(net); clReleaseMemObject(input_cl); return out; } matrix network_predict_data_gpu(network net, data test) { int i,j,b; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.cols, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } float *out = network_predict_gpu(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] = out[j+b*k]; } } } free(X); return pred; } float network_accuracy_gpu(network net, data d) { matrix guess = network_predict_data_gpu(net, d); float acc = matrix_accuracy(d.y, guess); free_matrix(guess); return acc; } #endif