#include "cuda_runtime.h" #include "curand.h" #include "cublas_v2.h" extern "C" { #include "activations.h" #include "cuda.h" } __device__ float linear_activate_kernel(float x){return x;} __device__ float logistic_activate_kernel(float x){return 1./(1. + exp(-x));} __device__ float relu_activate_kernel(float x){return x*(x>0);} __device__ float relie_activate_kernel(float x){return x*(x>0);} __device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;} __device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1*x;} __device__ float tanh_activate_kernel(float x){return (exp(2*x)-1)/(exp(2*x)+1);} __device__ float plse_activate_kernel(float x) { if(x < -4) return .01 * (x + 4); if(x > 4) return .01 * (x - 4) + 1; return .125*x + .5; } __device__ float linear_gradient_kernel(float x){return 1;} __device__ float logistic_gradient_kernel(float x){return (1-x)*x;} __device__ float relu_gradient_kernel(float x){return (x>0);} __device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01;} __device__ float ramp_gradient_kernel(float x){return (x>0)+.1;} __device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1;} __device__ float tanh_gradient_kernel(float x){return 1-x*x;} __device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01 : .125;} __device__ float activate_kernel(float x, ACTIVATION a) { switch(a){ case LINEAR: return linear_activate_kernel(x); case LOGISTIC: return logistic_activate_kernel(x); case RELU: return relu_activate_kernel(x); case RELIE: return relie_activate_kernel(x); case RAMP: return ramp_activate_kernel(x); case LEAKY: return leaky_activate_kernel(x); case TANH: return tanh_activate_kernel(x); case PLSE: return plse_activate_kernel(x); } return 0; } __device__ float gradient_kernel(float x, ACTIVATION a) { switch(a){ case LINEAR: return linear_gradient_kernel(x); case LOGISTIC: return logistic_gradient_kernel(x); case RELU: return relu_gradient_kernel(x); case RELIE: return relie_gradient_kernel(x); case RAMP: return ramp_gradient_kernel(x); case LEAKY: return leaky_gradient_kernel(x); case TANH: return tanh_gradient_kernel(x); case PLSE: return plse_gradient_kernel(x); } return 0; } __global__ void activate_array_kernel(float *x, int n, ACTIVATION a) { int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if(i < n) x[i] = activate_kernel(x[i], a); } __global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta) { int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if(i < n) delta[i] *= gradient_kernel(x[i], a); } extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a) { activate_array_kernel<<>>(x, n, a); check_error(cudaPeekAtLastError()); } extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta) { gradient_array_kernel<<>>(x, n, a, delta); check_error(cudaPeekAtLastError()); }