#include "network.h" #include "detection_layer.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" #include "box.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #endif static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; static image voc_labels[20]; void train_detector(char *cfgfile, char *weightfile) { char *train_images = "/data/voc/train.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); data_seed = time(0); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; layer l = net.layers[net.n - 1]; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = l.max_boxes; args.d = &buffer; args.type = DETECTION_DATA; args.angle = net.angle; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); /* int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); if(!b.x) break; printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); } image im = float_to_image(448, 448, 3, train.X.vals[10]); int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); draw_bbox(im, b, 8, 1,0,0); } save_image(im, "truth11"); */ printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0 || (i < 1000 && i%100 == 0)){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); } static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) { int i,j,n; //int per_cell = 5*num+classes; for (i = 0; i < side*side; ++i){ int row = i / side; int col = i % side; for(n = 0; n < num; ++n){ int index = i*num + n; int p_index = index * (classes + 5) + 4; float scale = predictions[p_index]; int box_index = index * (classes + 5); boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w; boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h; boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w; boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h; for(j = 0; j < classes; ++j){ int class_index = index * (classes + 5) + 5; float prob = scale*predictions[class_index+j]; probs[index][j] = (prob > thresh) ? prob : 0; } if(only_objectness){ probs[index][0] = scale; } } } } void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) { int i, j; for(i = 0; i < total; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for(j = 0; j < classes; ++j){ if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], xmin, ymin, xmax, ymax); } } } void validate_detector(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "results/comp4_det_test_"; //list *plist = get_paths("data/voc.2007.test"); list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt"); //list *plist = get_paths("data/voc.2012.test"); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int side = l.w; int j; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); fps[j] = fopen(buff, "w"); } box *boxes = calloc(side*side*l.n, sizeof(box)); float **probs = calloc(side*side*l.n, sizeof(float *)); for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; int t; float thresh = .001; float nms = .5; int nthreads = 2; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = {0}; args.w = net.w; args.h = net.h; args.type = IMAGE_DATA; for(t = 0; t < nthreads; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for(i = nthreads; i < m+nthreads; i += nthreads){ fprintf(stderr, "%d\n", i); for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for(t = 0; t < nthreads && i+t < m; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ char *path = paths[i+t-nthreads]; char *id = basecfg(path); float *X = val_resized[t].data; float *predictions = network_predict(net, X); int w = val[t].w; int h = val[t].h; convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0); if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms); print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h); free(id); free_image(val[t]); free_image(val_resized[t]); } } fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); } void validate_detector_recall(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "results/comp4_det_test_"; list *plist = get_paths("data/voc.2007.test"); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int square = l.sqrt; int side = l.side; int j, k; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); fps[j] = fopen(buff, "w"); } box *boxes = calloc(side*side*l.n, sizeof(box)); float **probs = calloc(side*side*l.n, sizeof(float *)); for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; float thresh = .001; float iou_thresh = .5; float nms = .4; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); float *predictions = network_predict(net, sized.data); convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1); if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms); char *labelpath = find_replace(path, "images", "labels"); labelpath = find_replace(labelpath, "JPEGImages", "labels"); labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".JPEG", ".txt"); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < side*side*l.n; ++k){ if(probs[k][0] > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < side*side*l.n; ++k){ float iou = box_iou(boxes[k], t); if(probs[k][0] > thresh && iou > best_iou){ best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); free(id); free_image(orig); free_image(sized); } } void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } detection_layer l = net.layers[net.n-1]; l.side = l.w; set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int j; float nms=.4; box *boxes = calloc(l.side*l.side*l.n, sizeof(box)); float **probs = calloc(l.side*l.side*l.n, sizeof(float *)); for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); while(1){ if(filename){ strncpy(input, filename, 256); } else { printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input,0,0); image sized = resize_image(im, net.w, net.h); float *X = sized.data; time=clock(); float *predictions = network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0); if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); save_image(im, "predictions"); show_image(im, "predictions"); free_image(im); free_image(sized); #ifdef OPENCV cvWaitKey(0); cvDestroyAllWindows(); #endif if (filename) break; } } void run_detector(int argc, char **argv) { int i; for(i = 0; i < 20; ++i){ char buff[256]; sprintf(buff, "data/labels/%s.png", voc_names[i]); voc_labels[i] = load_image_color(buff, 0, 0); } float thresh = find_float_arg(argc, argv, "-thresh", .2); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; if(0==strcmp(argv[2], "test")) test_detector(cfg, weights, filename, thresh); else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); }