#include "connected_layer.h" #include "convolutional_layer.h" #include "maxpool_layer.h" #include "network.h" #include "image.h" #include "parser.h" #include "data.h" #include "matrix.h" #include "utils.h" #include "blas.h" #include "matrix.h" #include "server.h" #include #include #include #define _GNU_SOURCE #include void test_load() { image dog = load_image("dog.jpg", 300, 400); show_image(dog, "Test Load"); show_image_layers(dog, "Test Load"); } void test_parser() { network net = parse_network_cfg("cfg/trained_imagenet.cfg"); save_network(net, "cfg/trained_imagenet_smaller.cfg"); } #define AMNT 3 void draw_detection(image im, float *box, int side) { int j; int r, c; float amount[AMNT] = {0}; for(r = 0; r < side*side; ++r){ float val = box[r*5]; for(j = 0; j < AMNT; ++j){ if(val > amount[j]) { float swap = val; val = amount[j]; amount[j] = swap; } } } float smallest = amount[AMNT-1]; for(r = 0; r < side; ++r){ for(c = 0; c < side; ++c){ j = (r*side + c) * 5; printf("Prob: %f\n", box[j]); if(box[j] >= smallest){ int d = im.w/side; int y = r*d+box[j+1]*d; int x = c*d+box[j+2]*d; int h = box[j+3]*256; int w = box[j+4]*256; //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); //printf("%d %d %d %d\n", x, y, w, h); //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); } } } show_image(im, "box"); cvWaitKey(0); } void train_detection_net(char *cfgfile) { float avg_loss = 1; //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); network net = parse_network_cfg(cfgfile); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; srand(time(0)); //srand(23410); int i = 0; list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); data train, buffer; pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer); clock_t time; while(1){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer); //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256); /* image im = float_to_image(224, 224, 3, train.X.vals[923]); draw_detection(im, train.y.vals[923], 7); */ normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); if(i%100==0){ char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); save_network(net, buff); } free_data(train); } } void validate_detection_net(char *cfgfile) { network net = parse_network_cfg(cfgfile); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val"); char **paths = (char **)list_to_array(plist); int m = plist->size; int i = 0; int splits = 50; int num = (i+1)*m/splits - i*m/splits; fprintf(stderr, "%d\n", m); data val, buffer; pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer); clock_t time; for(i = 1; i <= splits; ++i){ time=clock(); pthread_join(load_thread, 0); val = buffer; normalize_data_rows(val); num = (i+1)*m/splits - i*m/splits; char **part = paths+(i*m/splits); if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer); fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time)); matrix pred = network_predict_data(net, val); int j, k; for(j = 0; j < pred.rows; ++j){ for(k = 0; k < pred.cols; k += 5){ if (pred.vals[j][k] > .005){ int index = k/5; int r = index/7; int c = index%7; float y = (32.*(r + pred.vals[j][k+1]))/224.; float x = (32.*(c + pred.vals[j][k+2]))/224.; float h = (256.*(pred.vals[j][k+3]))/224.; float w = (256.*(pred.vals[j][k+4]))/224.; printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w); } } } time=clock(); free_data(val); } } /* void train_imagenet_distributed(char *address) { float avg_loss = 1; srand(time(0)); network net = parse_network_cfg("cfg/net.cfg"); set_learning_network(&net, 0, 1, 0); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch; int i = 0; char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; data train, buffer; pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); while(1){ i += 1; time=clock(); client_update(net, address); printf("Updated: %lf seconds\n", sec(clock()-time)); time=clock(); pthread_join(load_thread, 0); train = buffer; normalize_data_rows(train); load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); free_data(train); } } */ char *basename(char *cfgfile) { char *c = cfgfile; char *next; while((next = strchr(c, '/'))) { c = next+1; } c = copy_string(c); next = strchr(c, '_'); if (next) *next = 0; next = strchr(c, '.'); if (next) *next = 0; return c; } void train_imagenet(char *cfgfile) { float avg_loss = -1; srand(time(0)); char *base = basename(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); //test_learn_bias(*(convolutional_layer *)net.layers[1]); //set_learning_network(&net, net.learning_rate, 0, net.decay); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; int i = net.seen/imgs; char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; pthread_t load_thread; data train; data buffer; load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); while(1){ ++i; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); net.seen += imgs; if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); free_data(train); if(i%100==0){ char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.cfg",base, i); save_network(net, buff); } } } void validate_imagenet(char *filename) { int i = 0; network net = parse_network_cfg(filename); srand(time(0)); char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list"); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; float avg_acc = 0; float avg_top5 = 0; int splits = 50; int num = (i+1)*m/splits - i*m/splits; data val, buffer; pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer); for(i = 1; i <= splits; ++i){ time=clock(); pthread_join(load_thread, 0); val = buffer; num = (i+1)*m/splits - i*m/splits; char **part = paths+(i*m/splits); if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer); printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); time=clock(); float *acc = network_accuracies(net, val); avg_acc += acc[0]; avg_top5 += acc[1]; printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows); free_data(val); } } void test_detection(char *cfgfile) { network net = parse_network_cfg(cfgfile); set_batch_network(&net, 1); srand(2222222); clock_t time; char filename[256]; while(1){ fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, 224, 224); z_normalize_image(im); printf("%d %d %d\n", im.h, im.w, im.c); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); draw_detection(im, predictions, 7); free_image(im); } } void test_init(char *cfgfile) { gpu_index = -1; network net = parse_network_cfg(cfgfile); set_batch_network(&net, 1); srand(2222222); int i = 0; char *filename = "data/test.jpg"; image im = load_image_color(filename, 256, 256); //z_normalize_image(im); translate_image(im, -128); scale_image(im, 1/128.); float *X = im.data; forward_network(net, X, 0, 1); for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; image output = get_convolutional_image(layer); int size = output.h*output.w*output.c; float v = variance_array(layer.output, size); float m = mean_array(layer.output, size); printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; int size = layer.outputs; float v = variance_array(layer.output, size); float m = mean_array(layer.output, size); printf("%d: Connected, mean: %f, variance %f\n", i, m, v); } } free_image(im); } void test_dog(char *cfgfile) { image im = load_image_color("data/dog.jpg", 256, 256); translate_image(im, -128); print_image(im); float *X = im.data; network net = parse_network_cfg(cfgfile); set_batch_network(&net, 1); float *predictions = network_predict(net, X); image crop = get_network_image_layer(net, 0); //show_image(crop, "cropped"); // print_image(crop); //show_image(im, "orig"); float * inter = get_network_output(net); pm(1000, 1, inter); //cvWaitKey(0); } void test_imagenet(char *cfgfile) { network net = parse_network_cfg(cfgfile); set_batch_network(&net, 1); //imgs=1; srand(2222222); int i = 0; char **names = get_labels("cfg/shortnames.txt"); clock_t time; char filename[256]; int indexes[10]; while(1){ fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, 256, 256); translate_image(im, -128); scale_image(im, 1/128.); printf("%d %d %d\n", im.h, im.w, im.c); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); top_predictions(net, 10, indexes); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); for(i = 0; i < 10; ++i){ int index = indexes[i]; printf("%s: %f\n", names[index], predictions[index]); } free_image(im); } } void test_visualize(char *filename) { network net = parse_network_cfg(filename); visualize_network(net); cvWaitKey(0); } void test_cifar10(char *cfgfile) { network net = parse_network_cfg(cfgfile); data test = load_cifar10_data("data/cifar10/test_batch.bin"); clock_t start = clock(), end; float test_acc = network_accuracy_multi(net, test, 10); end = clock(); printf("%f in %f Sec\n", test_acc, sec(end-start)); //visualize_network(net); //cvWaitKey(0); } void train_cifar10(char *cfgfile) { srand(555555); srand(time(0)); network net = parse_network_cfg(cfgfile); data test = load_cifar10_data("data/cifar10/test_batch.bin"); int count = 0; int iters = 50000/net.batch; data train = load_all_cifar10(); while(++count <= 10000){ clock_t time = clock(); float loss = train_network_sgd(net, train, iters); if(count%10 == 0){ float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time)); char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count); save_network(net, buff); }else{ printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time)); } } free_data(train); } void compare_nist(char *p1,char *p2) { srand(222222); network n1 = parse_network_cfg(p1); network n2 = parse_network_cfg(p2); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(test); compare_networks(n1, n2, test); } void test_nist(char *path) { srand(222222); network net = parse_network_cfg(path); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(test); clock_t start = clock(), end; float test_acc = network_accuracy(net, test); end = clock(); printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); } void train_nist(char *cfgfile) { srand(222222); // srand(time(0)); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); network net = parse_network_cfg(cfgfile); int count = 0; int iters = 6000/net.batch + 1; while(++count <= 100){ clock_t start = clock(), end; normalize_data_rows(train); normalize_data_rows(test); float loss = train_network_sgd(net, train, iters); float test_acc = 0; if(count%1 == 0) test_acc = network_accuracy(net, test); end = clock(); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); } free_data(train); free_data(test); char buff[256]; sprintf(buff, "%s.trained", cfgfile); save_network(net, buff); } /* void train_nist_distributed(char *address) { srand(time(0)); network net = parse_network_cfg("cfg/nist.client"); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(train); //normalize_data_rows(test); int count = 0; int iters = 50000/net.batch; iters = 1000/net.batch + 1; while(++count <= 2000){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); client_update(net, address); end = clock(); //float test_acc = network_accuracy_gpu(net, test); //float test_acc = 0; printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); } } */ void test_ensemble() { int i; srand(888888); data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); normalize_data_rows(d); data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); normalize_data_rows(test); data train = d; // data *split = split_data(d, 1, 10); // data train = split[0]; // data test = split[1]; matrix prediction = make_matrix(test.y.rows, test.y.cols); int n = 30; for(i = 0; i < n; ++i){ int count = 0; float lr = .0005; float momentum = .9; float decay = .01; network net = parse_network_cfg("nist.cfg"); while(++count <= 15){ float acc = train_network_sgd(net, train, train.X.rows); printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); lr /= 2; } matrix partial = network_predict_data(net, test); float acc = matrix_topk_accuracy(test.y, partial,1); printf("Model Accuracy: %lf\n", acc); matrix_add_matrix(partial, prediction); acc = matrix_topk_accuracy(test.y, prediction,1); printf("Current Ensemble Accuracy: %lf\n", acc); free_matrix(partial); } float acc = matrix_topk_accuracy(test.y, prediction,1); printf("Full Ensemble Accuracy: %lf\n", acc); } void visualize_cat() { network net = parse_network_cfg("cfg/voc_imagenet.cfg"); image im = load_image_color("data/cat.png", 0, 0); printf("Processing %dx%d image\n", im.h, im.w); resize_network(net, im.h, im.w, im.c); forward_network(net, im.data, 0, 0); visualize_network(net); cvWaitKey(0); } #ifdef GPU void test_convolutional_layer() { network net = parse_network_cfg("cfg/nist_conv.cfg"); int size = get_network_input_size(net); float *in = calloc(size, sizeof(float)); int i; for(i = 0; i < size; ++i) in[i] = rand_normal(); float *in_gpu = cuda_make_array(in, size); convolutional_layer layer = *(convolutional_layer *)net.layers[0]; int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch; cuda_compare(layer.output_gpu, layer.output, out_size, "nothing"); cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases"); cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters"); bias_output(layer); bias_output_gpu(layer); cuda_compare(layer.output_gpu, layer.output, out_size, "biased output"); } #endif void test_correct_nist() { network net = parse_network_cfg("cfg/nist_conv.cfg"); srand(222222); net = parse_network_cfg("cfg/nist_conv.cfg"); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(train); normalize_data_rows(test); int count = 0; int iters = 1000/net.batch; while(++count <= 5){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); end = clock(); float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); } save_network(net, "cfg/nist_gpu.cfg"); gpu_index = -1; count = 0; srand(222222); net = parse_network_cfg("cfg/nist_conv.cfg"); while(++count <= 5){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); end = clock(); float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); } save_network(net, "cfg/nist_cpu.cfg"); } void test_correct_alexnet() { char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; int count = 0; network net; srand(222222); net = parse_network_cfg("cfg/net.cfg"); int imgs = net.batch; count = 0; while(++count <= 5){ time=clock(); data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); free_data(train); } gpu_index = -1; count = 0; srand(222222); net = parse_network_cfg("cfg/net.cfg"); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); while(++count <= 5){ time=clock(); data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); free_data(train); } } /* void run_server() { srand(time(0)); network net = parse_network_cfg("cfg/net.cfg"); set_batch_network(&net, 1); server_update(net); } void test_client() { network net = parse_network_cfg("cfg/alexnet.client"); clock_t time=clock(); client_update(net, "localhost"); printf("1\n"); client_update(net, "localhost"); printf("2\n"); client_update(net, "localhost"); printf("3\n"); printf("Transfered: %lf seconds\n", sec(clock()-time)); } */ void del_arg(int argc, char **argv, int index) { int i; for(i = index; i < argc-1; ++i) argv[i] = argv[i+1]; } int find_arg(int argc, char* argv[], char *arg) { int i; for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) { del_arg(argc, argv, i); return 1; } return 0; } int find_int_arg(int argc, char **argv, char *arg, int def) { int i; for(i = 0; i < argc-1; ++i){ if(0==strcmp(argv[i], arg)){ def = atoi(argv[i+1]); del_arg(argc, argv, i); del_arg(argc, argv, i); break; } } return def; } int main(int argc, char **argv) { //test_convolutional_layer(); if(argc < 2){ fprintf(stderr, "usage: %s \n", argv[0]); return 0; } gpu_index = find_int_arg(argc, argv, "-i", 0); if(find_arg(argc, argv, "-nogpu")) gpu_index = -1; #ifndef GPU gpu_index = -1; #else if(gpu_index >= 0){ cudaSetDevice(gpu_index); } #endif if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist(); //else if(0==strcmp(argv[1], "server")) run_server(); #ifdef GPU else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); #endif else if(argc < 3){ fprintf(stderr, "usage: %s \n", argv[0]); return 0; } else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]); else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]); else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]); else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]); else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]); //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]); else if(0==strcmp(argv[1], "init")) test_init(argv[2]); else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]); else if(argc < 4){ fprintf(stderr, "usage: %s \n", argv[0]); return 0; } else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]); fprintf(stderr, "Success!\n"); return 0; }