#include "darknet.h" /* void train_lsd3(char *fcfg, char *fweight, char *gcfg, char *gweight, char *acfg, char *aweight, int clear) { #ifdef GPU //char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list"; //char *style_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *style_images = "/home/pjreddie/zelda.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); network fnet = load_network(fcfg, fweight, clear); network gnet = load_network(gcfg, gweight, clear); network anet = load_network(acfg, aweight, clear); char *gbase = basecfg(gcfg); char *abase = basecfg(acfg); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet.learning_rate, gnet.momentum, gnet.decay); int imgs = gnet.batch*gnet.subdivisions; int i = *gnet.seen/imgs; data train, tbuffer; data style, sbuffer; list *slist = get_paths(style_images); char **spaths = (char **)list_to_array(slist); list *tlist = get_paths(train_images); char **tpaths = (char **)list_to_array(tlist); load_args targs= get_base_args(gnet); targs.paths = tpaths; targs.n = imgs; targs.m = tlist->size; targs.d = &tbuffer; targs.type = CLASSIFICATION_DATA; targs.classes = 1; char *ls[1] = {"zelda"}; targs.labels = ls; load_args sargs = get_base_args(gnet); sargs.paths = spaths; sargs.n = imgs; sargs.m = slist->size; sargs.d = &sbuffer; sargs.type = CLASSIFICATION_DATA; sargs.classes = 1; sargs.labels = ls; pthread_t tload_thread = load_data_in_thread(targs); pthread_t sload_thread = load_data_in_thread(sargs); clock_t time; float aloss_avg = -1; float floss_avg = -1; fnet.train=1; int x_size = fnet.inputs*fnet.batch; int y_size = fnet.truths*fnet.batch; float *X = calloc(x_size, sizeof(float)); float *y = calloc(y_size, sizeof(float)); int ax_size = anet.inputs*anet.batch; int ay_size = anet.truths*anet.batch; fill_ongpu(ay_size, .9, anet.truth_gpu, 1); anet.delta_gpu = cuda_make_array(0, ax_size); anet.train = 1; int gx_size = gnet.inputs*gnet.batch; int gy_size = gnet.truths*gnet.batch; gstate.input = cuda_make_array(0, gx_size); gstate.truth = 0; gstate.delta = 0; gstate.train = 1; while (get_current_batch(gnet) < gnet.max_batches) { i += 1; time=clock(); pthread_join(tload_thread, 0); pthread_join(sload_thread, 0); train = tbuffer; style = sbuffer; tload_thread = load_data_in_thread(targs); sload_thread = load_data_in_thread(sargs); printf("Loaded: %lf seconds\n", sec(clock()-time)); data generated = copy_data(train); time=clock(); int j, k; float floss = 0; for(j = 0; j < fnet.subdivisions; ++j){ layer imlayer = gnet.layers[gnet.n - 1]; get_next_batch(train, fnet.batch, j*fnet.batch, X, y); cuda_push_array(fstate.input, X, x_size); cuda_push_array(gstate.input, X, gx_size); *gnet.seen += gnet.batch; forward_network_gpu(fnet, fstate); float *feats = fnet.layers[fnet.n - 2].output_gpu; copy_ongpu(y_size, feats, 1, fstate.truth, 1); forward_network_gpu(gnet, gstate); float *gen = gnet.layers[gnet.n-1].output_gpu; copy_ongpu(x_size, gen, 1, fstate.input, 1); fill_ongpu(x_size, 0, fstate.delta, 1); forward_network_gpu(fnet, fstate); backward_network_gpu(fnet, fstate); //HERE astate.input = gen; fill_ongpu(ax_size, 0, astate.delta, 1); forward_network_gpu(anet, astate); backward_network_gpu(anet, astate); float *delta = imlayer.delta_gpu; fill_ongpu(x_size, 0, delta, 1); scal_ongpu(x_size, 100, astate.delta, 1); scal_ongpu(x_size, .001, fstate.delta, 1); axpy_ongpu(x_size, 1, fstate.delta, 1, delta, 1); axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1); //fill_ongpu(x_size, 0, delta, 1); //cuda_push_array(delta, X, x_size); //axpy_ongpu(x_size, -1, imlayer.output_gpu, 1, delta, 1); //printf("pix error: %f\n", cuda_mag_array(delta, x_size)); printf("fea error: %f\n", cuda_mag_array(fstate.delta, x_size)); printf("adv error: %f\n", cuda_mag_array(astate.delta, x_size)); //axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1); backward_network_gpu(gnet, gstate); floss += get_network_cost(fnet) /(fnet.subdivisions*fnet.batch); cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch); for(k = 0; k < gnet.batch; ++k){ int index = j*gnet.batch + k; copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1); generated.y.vals[index][0] = .1; style.y.vals[index][0] = .9; } } */ /* image sim = float_to_image(anet.w, anet.h, anet.c, style.X.vals[j]); show_image(sim, "style"); cvWaitKey(0); */ /* harmless_update_network_gpu(anet); data merge = concat_data(style, generated); randomize_data(merge); float aloss = train_network(anet, merge); update_network_gpu(gnet); free_data(merge); free_data(train); free_data(generated); free_data(style); if (aloss_avg < 0) aloss_avg = aloss; if (floss_avg < 0) floss_avg = floss; aloss_avg = aloss_avg*.9 + aloss*.1; floss_avg = floss_avg*.9 + floss*.1; printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, floss, aloss, floss_avg, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, gbase, i); save_weights(gnet, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, gbase); save_weights(gnet, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } #endif } */ /* void train_pix2pix(char *cfg, char *weight, char *acfg, char *aweight, int clear) { #ifdef GPU //char *train_images = "/home/pjreddie/data/coco/train1.txt"; //char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network net = load_network(cfg, weight, clear); network anet = load_network(acfg, aweight, clear); int i, j, k; layer imlayer = {0}; for (i = 0; i < net.n; ++i) { if (net.layers[i].out_c == 3) { imlayer = net.layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.min = net.min_crop; args.max = net.max_crop; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w; args.type = CLASSIFICATION_DATA; args.classes = 1; char *ls[1] = {"coco"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; network_state gstate = {0}; gstate.index = 0; gstate.net = net; int x_size = get_network_input_size(net)*net.batch; int y_size = x_size; gstate.input = cuda_make_array(0, x_size); gstate.truth = cuda_make_array(0, y_size); gstate.delta = 0; gstate.train = 1; float *pixs = calloc(x_size, sizeof(float)); float *graypixs = calloc(x_size, sizeof(float)); float *y = calloc(y_size, sizeof(float)); network_state astate = {0}; astate.index = 0; astate.net = anet; int ay_size = get_network_output_size(anet)*anet.batch; astate.input = 0; astate.truth = 0; astate.delta = 0; astate.train = 1; float *imerror = cuda_make_array(0, imlayer.outputs); float *ones_gpu = cuda_make_array(0, ay_size); fill_ongpu(ay_size, .9, ones_gpu, 1); float aloss_avg = -1; float gloss_avg = -1; //data generated = copy_data(train); while (get_current_batch(net) < net.max_batches) { i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gray = copy_data(train); for(j = 0; j < imgs; ++j){ image gim = float_to_image(net.w, net.h, net.c, gray.X.vals[j]); grayscale_image_3c(gim); train.y.vals[j][0] = .9; image yim = float_to_image(net.w, net.h, net.c, train.X.vals[j]); //rgb_to_yuv(yim); } time=clock(); float gloss = 0; for(j = 0; j < net.subdivisions; ++j){ get_next_batch(train, net.batch, j*net.batch, pixs, y); get_next_batch(gray, net.batch, j*net.batch, graypixs, y); cuda_push_array(gstate.input, graypixs, x_size); cuda_push_array(gstate.truth, pixs, y_size); */ /* image origi = float_to_image(net.w, net.h, 3, pixs); image grayi = float_to_image(net.w, net.h, 3, graypixs); show_image(grayi, "gray"); show_image(origi, "orig"); cvWaitKey(0); */ /* *net.seen += net.batch; forward_network_gpu(net, gstate); fill_ongpu(imlayer.outputs, 0, imerror, 1); astate.input = imlayer.output_gpu; astate.delta = imerror; astate.truth = ones_gpu; forward_network_gpu(anet, astate); backward_network_gpu(anet, astate); scal_ongpu(imlayer.outputs, .1, net.layers[net.n-1].delta_gpu, 1); backward_network_gpu(net, gstate); scal_ongpu(imlayer.outputs, 1000, imerror, 1); printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs)); printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs)); axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1); gloss += get_network_cost(net) /(net.subdivisions*net.batch); cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch); for(k = 0; k < net.batch; ++k){ int index = j*net.batch + k; copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1); gray.y.vals[index][0] = .1; } } harmless_update_network_gpu(anet); data merge = concat_data(train, gray); randomize_data(merge); float aloss = train_network(anet, merge); update_network_gpu(net); update_network_gpu(anet); free_data(merge); free_data(train); free_data(gray); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; gloss_avg = gloss_avg*.9 + gloss*.1; printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #endif } */ void test_dcgan(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int i, imlayer = 0; for (i = 0; i < net.n; ++i) { if (net.layers[i].out_c == 3) { imlayer = i; printf("%d\n", i); break; } } while(1){ image im = make_image(net.w, net.h, net.c); int i; for(i = 0; i < im.w*im.h*im.c; ++i){ im.data[i] = rand_normal(); } float *X = im.data; time=clock(); network_predict(net, X); image out = get_network_image_layer(net, imlayer); //yuv_to_rgb(out); normalize_image(out); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); show_image(out, "out"); save_image(out, "out"); #ifdef OPENCV cvWaitKey(0); #endif free_image(im); } } void dcgan_batch(network gnet, network anet) { //float *input = calloc(x_size, sizeof(float)); } void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images) { #ifdef GPU //char *train_images = "/home/pjreddie/data/coco/train1.txt"; //char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; //char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list"; //char *train_images = "data/64.txt"; //char *train_images = "data/alp.txt"; //char *train_images = "data/cifar.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network gnet = load_network(cfg, weight, clear); network anet = load_network(acfg, aweight, clear); //float orig_rate = anet.learning_rate; int start = 0; int i, j, k; layer imlayer = {0}; for (i = 0; i < gnet.n; ++i) { if (gnet.layers[i].out_c == 3) { imlayer = gnet.layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet.learning_rate, gnet.momentum, gnet.decay); int imgs = gnet.batch*gnet.subdivisions; i = *gnet.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args= get_base_args(anet); args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = CLASSIFICATION_DATA; args.threads=16; args.classes = 1; char *ls[2] = {"imagenet", "zzzzzzzz"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; gnet.train = 1; anet.train = 1; int x_size = gnet.inputs*gnet.batch; int y_size = gnet.truths*gnet.batch; float *imerror = cuda_make_array(0, y_size); //int ay_size = anet.truths*anet.batch; float aloss_avg = -1; //data generated = copy_data(train); while (get_current_batch(gnet) < gnet.max_batches) { start += 1; i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; //translate_data_rows(train, -.5); //scale_data_rows(train, 2); load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gen = copy_data(train); for (j = 0; j < imgs; ++j) { train.y.vals[j][0] = .95; gen.y.vals[j][0] = .05; } time=clock(); for(j = 0; j < gnet.subdivisions; ++j){ get_next_batch(train, gnet.batch, j*gnet.batch, gnet.truth, 0); int z; for(z = 0; z < x_size; ++z){ gnet.input[z] = rand_normal(); } cuda_push_array(gnet.input_gpu, gnet.input, x_size); cuda_push_array(gnet.truth_gpu, gnet.truth, y_size); *gnet.seen += gnet.batch; forward_network_gpu(gnet); fill_ongpu(imlayer.outputs*imlayer.batch, 0, imerror, 1); fill_ongpu(anet.truths*anet.batch, .95, anet.truth_gpu, 1); copy_ongpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1); anet.delta_gpu = imerror; forward_network_gpu(anet); backward_network_gpu(anet); float genaloss = *anet.cost / anet.batch; printf("%f\n", genaloss); scal_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1); scal_ongpu(imlayer.outputs*imlayer.batch, .00, gnet.layers[gnet.n-1].delta_gpu, 1); printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch)); printf("features %f\n", cuda_mag_array(gnet.layers[gnet.n-1].delta_gpu, imlayer.outputs*imlayer.batch)); axpy_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet.layers[gnet.n-1].delta_gpu, 1); backward_network_gpu(gnet); for(k = 0; k < gnet.batch; ++k){ int index = j*gnet.batch + k; copy_cpu(gnet.outputs, gnet.output + k*gnet.outputs, 1, gen.X.vals[index], 1); } } harmless_update_network_gpu(anet); data merge = concat_data(train, gen); //randomize_data(merge); float aloss = train_network(anet, merge); //translate_image(im, 1); //scale_image(im, .5); //translate_image(im2, 1); //scale_image(im2, .5); #ifdef OPENCV if(display){ image im = float_to_image(anet.w, anet.h, anet.c, gen.X.vals[0]); image im2 = float_to_image(anet.w, anet.h, anet.c, train.X.vals[0]); show_image(im, "gen"); show_image(im2, "train"); cvWaitKey(50); } #endif /* if(aloss < .1){ anet.learning_rate = 0; } else if (aloss > .3){ anet.learning_rate = orig_rate; } */ update_network_gpu(gnet); free_data(merge); free_data(train); free_data(gen); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs); if(i%10000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(gnet, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(gnet, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(gnet, buff); #endif } void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display) { #ifdef GPU //char *train_images = "/home/pjreddie/data/coco/train1.txt"; //char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network net = load_network(cfg, weight, clear); network anet = load_network(acfg, aweight, clear); int i, j, k; layer imlayer = {0}; for (i = 0; i < net.n; ++i) { if (net.layers[i].out_c == 3) { imlayer = net.layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args= get_base_args(net); args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = CLASSIFICATION_DATA; args.classes = 1; char *ls[2] = {"imagenet"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; int x_size = net.inputs*net.batch; //int y_size = x_size; net.delta = 0; net.train = 1; float *pixs = calloc(x_size, sizeof(float)); float *graypixs = calloc(x_size, sizeof(float)); //float *y = calloc(y_size, sizeof(float)); //int ay_size = anet.outputs*anet.batch; anet.delta = 0; anet.train = 1; float *imerror = cuda_make_array(0, imlayer.outputs*imlayer.batch); float aloss_avg = -1; float gloss_avg = -1; //data generated = copy_data(train); while (get_current_batch(net) < net.max_batches) { i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gray = copy_data(train); for(j = 0; j < imgs; ++j){ image gim = float_to_image(net.w, net.h, net.c, gray.X.vals[j]); grayscale_image_3c(gim); train.y.vals[j][0] = .95; gray.y.vals[j][0] = .05; } time=clock(); float gloss = 0; for(j = 0; j < net.subdivisions; ++j){ get_next_batch(train, net.batch, j*net.batch, pixs, 0); get_next_batch(gray, net.batch, j*net.batch, graypixs, 0); cuda_push_array(net.input_gpu, graypixs, net.inputs*net.batch); cuda_push_array(net.truth_gpu, pixs, net.truths*net.batch); /* image origi = float_to_image(net.w, net.h, 3, pixs); image grayi = float_to_image(net.w, net.h, 3, graypixs); show_image(grayi, "gray"); show_image(origi, "orig"); cvWaitKey(0); */ *net.seen += net.batch; forward_network_gpu(net); fill_ongpu(imlayer.outputs*imlayer.batch, 0, imerror, 1); copy_ongpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1); fill_ongpu(anet.inputs*anet.batch, .95, anet.truth_gpu, 1); anet.delta_gpu = imerror; forward_network_gpu(anet); backward_network_gpu(anet); scal_ongpu(imlayer.outputs*imlayer.batch, 1./100., net.layers[net.n-1].delta_gpu, 1); scal_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1); printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch)); printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs*imlayer.batch)); axpy_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, net.layers[net.n-1].delta_gpu, 1); backward_network_gpu(net); gloss += *net.cost /(net.subdivisions*net.batch); for(k = 0; k < net.batch; ++k){ int index = j*net.batch + k; copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1); } } harmless_update_network_gpu(anet); data merge = concat_data(train, gray); //randomize_data(merge); float aloss = train_network(anet, merge); update_network_gpu(net); #ifdef OPENCV if(display){ image im = float_to_image(anet.w, anet.h, anet.c, gray.X.vals[0]); image im2 = float_to_image(anet.w, anet.h, anet.c, train.X.vals[0]); show_image(im, "gen"); show_image(im2, "train"); cvWaitKey(50); } #endif free_data(merge); free_data(train); free_data(gray); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; gloss_avg = gloss_avg*.9 + gloss*.1; printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #endif } /* void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear) { #ifdef GPU char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } if(clear) *net.seen = 0; char *abase = basecfg(acfgfile); network anet = parse_network_cfg(acfgfile); if(aweightfile){ load_weights(&anet, aweightfile); } if(clear) *anet.seen = 0; int i, j, k; layer imlayer = {0}; for (i = 0; i < net.n; ++i) { if (net.layers[i].out_c == 3) { imlayer = net.layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.min = net.min_crop; args.max = net.max_crop; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w; args.type = CLASSIFICATION_DATA; args.classes = 1; char *ls[1] = {"coco"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; network_state gstate = {0}; gstate.index = 0; gstate.net = net; int x_size = get_network_input_size(net)*net.batch; int y_size = 1*net.batch; gstate.input = cuda_make_array(0, x_size); gstate.truth = 0; gstate.delta = 0; gstate.train = 1; float *X = calloc(x_size, sizeof(float)); float *y = calloc(y_size, sizeof(float)); network_state astate = {0}; astate.index = 0; astate.net = anet; int ay_size = get_network_output_size(anet)*anet.batch; astate.input = 0; astate.truth = 0; astate.delta = 0; astate.train = 1; float *imerror = cuda_make_array(0, imlayer.outputs); float *ones_gpu = cuda_make_array(0, ay_size); fill_ongpu(ay_size, 1, ones_gpu, 1); float aloss_avg = -1; float gloss_avg = -1; //data generated = copy_data(train); while (get_current_batch(net) < net.max_batches) { i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data generated = copy_data(train); time=clock(); float gloss = 0; for(j = 0; j < net.subdivisions; ++j){ get_next_batch(train, net.batch, j*net.batch, X, y); cuda_push_array(gstate.input, X, x_size); *net.seen += net.batch; forward_network_gpu(net, gstate); fill_ongpu(imlayer.outputs, 0, imerror, 1); astate.input = imlayer.output_gpu; astate.delta = imerror; astate.truth = ones_gpu; forward_network_gpu(anet, astate); backward_network_gpu(anet, astate); scal_ongpu(imlayer.outputs, 1, imerror, 1); axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1); backward_network_gpu(net, gstate); printf("features %f\n", cuda_mag_array(imlayer.delta_gpu, imlayer.outputs)); printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs)); gloss += get_network_cost(net) /(net.subdivisions*net.batch); cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch); for(k = 0; k < net.batch; ++k){ int index = j*net.batch + k; copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1); generated.y.vals[index][0] = 0; } } harmless_update_network_gpu(anet); data merge = concat_data(train, generated); randomize_data(merge); float aloss = train_network(anet, merge); update_network_gpu(net); update_network_gpu(anet); free_data(merge); free_data(train); free_data(generated); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; gloss_avg = gloss_avg*.9 + gloss*.1; printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #endif } */ /* void train_lsd(char *cfgfile, char *weightfile, int clear) { char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } if(clear) *net.seen = 0; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.min = net.min_crop; args.max = net.max_crop; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w; args.type = CLASSIFICATION_DATA; args.classes = 1; char *ls[1] = {"coco"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); } */ void test_lsd(char *cfgfile, char *weightfile, char *filename, int gray) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int i, imlayer = 0; for (i = 0; i < net.n; ++i) { if (net.layers[i].out_c == 3) { imlayer = i; printf("%d\n", i); break; } } while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image resized = resize_min(im, net.w); image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); if(gray) grayscale_image_3c(crop); float *X = crop.data; time=clock(); network_predict(net, X); image out = get_network_image_layer(net, imlayer); //yuv_to_rgb(out); constrain_image(out); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); show_image(out, "out"); show_image(crop, "crop"); save_image(out, "out"); #ifdef OPENCV cvWaitKey(0); #endif free_image(im); free_image(resized); free_image(crop); if (filename) break; } } void run_lsd(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } int clear = find_arg(argc, argv, "-clear"); int display = find_arg(argc, argv, "-display"); char *file = find_char_arg(argc, argv, "-file", "/home/pjreddie/data/imagenet/imagenet1k.train.list"); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5] : 0; char *acfg = argv[5]; char *aweights = (argc > 6) ? argv[6] : 0; //if(0==strcmp(argv[2], "train")) train_lsd(cfg, weights, clear); //else if(0==strcmp(argv[2], "train2")) train_lsd2(cfg, weights, acfg, aweights, clear); //else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear); //else if(0==strcmp(argv[2], "train3")) train_lsd3(argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], clear); if(0==strcmp(argv[2], "traingan")) train_dcgan(cfg, weights, acfg, aweights, clear, display, file); else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear, display); else if(0==strcmp(argv[2], "gan")) test_dcgan(cfg, weights); else if(0==strcmp(argv[2], "test")) test_lsd(cfg, weights, filename, 0); else if(0==strcmp(argv[2], "color")) test_lsd(cfg, weights, filename, 1); /* else if(0==strcmp(argv[2], "valid")) validate_lsd(cfg, weights); */ }