[net] batch=128 subdivisions=4 height=256 width=256 channels=3 learning_rate=0.01 momentum=0.9 decay=0.0005 [crop] crop_height=224 crop_width=224 flip=1 angle=0 saturation=1 exposure=1 [convolutional] filters=64 size=7 stride=2 pad=1 activation=ramp [convolutional] filters=192 size=3 stride=2 pad=1 activation=ramp [convolutional] filters=128 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=256 size=3 stride=2 pad=1 activation=ramp [convolutional] filters=128 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=256 size=3 stride=1 pad=1 activation=ramp [convolutional] filters=128 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=512 size=3 stride=2 pad=1 activation=ramp [convolutional] filters=256 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=512 size=3 stride=1 pad=1 activation=ramp [convolutional] filters=256 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=512 size=3 stride=1 pad=1 activation=ramp [convolutional] filters=256 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=512 size=3 stride=1 pad=1 activation=ramp [convolutional] filters=256 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=512 size=3 stride=1 pad=1 activation=ramp [convolutional] filters=256 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=1024 size=3 stride=2 pad=1 activation=ramp [convolutional] filters=512 size=1 stride=1 pad=1 activation=ramp [convolutional] filters=1024 size=3 stride=1 pad=1 activation=ramp [maxpool] size=3 stride=2 [dropout] probability=0.5 [connected] output=4096 activation=ramp [dropout] probability=0.5 [connected] output=1000 activation=ramp [softmax] [cost] type=sse