extern "C" { #include "convolutional_layer.h" #include "deconvolutional_layer.h" #include "gemm.h" #include "blas.h" #include "im2col.h" #include "col2im.h" #include "utils.h" #include "cuda.h" } extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) { int i; int out_h = deconvolutional_out_height(layer); int out_w = deconvolutional_out_width(layer); int size = out_h*out_w; int m = layer.size*layer.size*layer.n; int n = layer.h*layer.w; int k = layer.c; bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size); for(i = 0; i < layer.batch; ++i){ float *a = layer.filters_gpu; float *b = state.input + i*layer.c*layer.h*layer.w; float *c = layer.col_image_gpu; gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n); col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size); } activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation); } extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) { float alpha = 1./layer.batch; int out_h = deconvolutional_out_height(layer); int out_w = deconvolutional_out_width(layer); int size = out_h*out_w; int i; gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu); backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size); if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); for(i = 0; i < layer.batch; ++i){ int m = layer.c; int n = layer.size*layer.size*layer.n; int k = layer.h*layer.w; float *a = state.input + i*m*n; float *b = layer.col_image_gpu; float *c = layer.filter_updates_gpu; im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w, layer.size, layer.stride, 0, b); gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n); if(state.delta){ int m = layer.c; int n = layer.h*layer.w; int k = layer.size*layer.size*layer.n; float *a = layer.filters_gpu; float *b = layer.col_image_gpu; float *c = state.delta + i*n*m; gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); } } } extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer) { cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); } extern "C" void push_deconvolutional_layer(deconvolutional_layer layer) { cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); cuda_push_array(layer.biases_gpu, layer.biases, layer.n); cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); } extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay) { int size = layer.size*layer.size*layer.c*layer.n; axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); scal_ongpu(size, momentum, layer.filter_updates_gpu, 1); }