#include "rnn_layer.h" #include "connected_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" #include "gemm.h" #include #include #include #include void increment_layer(layer *l, int steps) { int num = l->outputs*l->batch*steps; l->output += num; l->delta += num; l->x += num; l->x_norm += num; l->output_gpu += num; l->delta_gpu += num; l->x_gpu += num; l->x_norm_gpu += num; } layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log) { fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs); batch = batch / steps; layer l = {0}; l.batch = batch; l.type = RNN; l.steps = steps; l.hidden = hidden; l.inputs = inputs; l.state = calloc(batch*hidden*(steps+1), sizeof(float)); l.input_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.input_layer) = make_connected_layer(batch*steps, inputs, hidden, activation, batch_normalize); l.input_layer->batch = batch; l.self_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize); l.self_layer->batch = batch; l.output_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.output_layer) = make_connected_layer(batch*steps, hidden, outputs, activation, batch_normalize); l.output_layer->batch = batch; l.outputs = outputs; l.output = l.output_layer->output; l.delta = l.output_layer->delta; #ifdef GPU l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1)); l.output_gpu = l.output_layer->output_gpu; l.delta_gpu = l.output_layer->delta_gpu; #endif return l; } void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) { update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); } void forward_rnn_layer(layer l, network_state state) { network_state s = {0}; s.train = state.train; int i; layer input_layer = *(l.input_layer); layer self_layer = *(l.self_layer); layer output_layer = *(l.output_layer); fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1); for (i = 0; i < l.steps; ++i) { s.input = state.input; forward_connected_layer(input_layer, s); s.input = l.state; forward_connected_layer(self_layer, s); float *old_state = l.state; if(state.train) l.state += l.hidden*l.batch; if(l.shortcut){ copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); }else{ fill_cpu(l.hidden * l.batch, 0, l.state, 1); } axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); s.input = l.state; forward_connected_layer(output_layer, s); state.input += l.inputs*l.batch; increment_layer(&input_layer, 1); increment_layer(&self_layer, 1); increment_layer(&output_layer, 1); } } void backward_rnn_layer(layer l, network_state state) { network_state s = {0}; s.train = state.train; int i; layer input_layer = *(l.input_layer); layer self_layer = *(l.self_layer); layer output_layer = *(l.output_layer); increment_layer(&input_layer, l.steps-1); increment_layer(&self_layer, l.steps-1); increment_layer(&output_layer, l.steps-1); l.state += l.hidden*l.batch*l.steps; for (i = l.steps-1; i >= 0; --i) { copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); s.input = l.state; s.delta = self_layer.delta; backward_connected_layer(output_layer, s); l.state -= l.hidden*l.batch; /* if(i > 0){ copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); }else{ fill_cpu(l.hidden * l.batch, 0, l.state, 1); } */ s.input = l.state; s.delta = self_layer.delta - l.hidden*l.batch; if (i == 0) s.delta = 0; backward_connected_layer(self_layer, s); copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); s.input = state.input + i*l.inputs*l.batch; if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; else s.delta = 0; backward_connected_layer(input_layer, s); increment_layer(&input_layer, -1); increment_layer(&self_layer, -1); increment_layer(&output_layer, -1); } } #ifdef GPU void pull_rnn_layer(layer l) { pull_connected_layer(*(l.input_layer)); pull_connected_layer(*(l.self_layer)); pull_connected_layer(*(l.output_layer)); } void push_rnn_layer(layer l) { push_connected_layer(*(l.input_layer)); push_connected_layer(*(l.self_layer)); push_connected_layer(*(l.output_layer)); } void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay) { update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay); update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay); update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay); } void forward_rnn_layer_gpu(layer l, network_state state) { network_state s = {0}; s.train = state.train; int i; layer input_layer = *(l.input_layer); layer self_layer = *(l.self_layer); layer output_layer = *(l.output_layer); fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); for (i = 0; i < l.steps; ++i) { s.input = state.input; forward_connected_layer_gpu(input_layer, s); s.input = l.state_gpu; forward_connected_layer_gpu(self_layer, s); float *old_state = l.state_gpu; if(state.train) l.state_gpu += l.hidden*l.batch; if(l.shortcut){ copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); }else{ fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); } axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); s.input = l.state_gpu; forward_connected_layer_gpu(output_layer, s); state.input += l.inputs*l.batch; increment_layer(&input_layer, 1); increment_layer(&self_layer, 1); increment_layer(&output_layer, 1); } } void backward_rnn_layer_gpu(layer l, network_state state) { network_state s = {0}; s.train = state.train; int i; layer input_layer = *(l.input_layer); layer self_layer = *(l.self_layer); layer output_layer = *(l.output_layer); increment_layer(&input_layer, l.steps - 1); increment_layer(&self_layer, l.steps - 1); increment_layer(&output_layer, l.steps - 1); l.state_gpu += l.hidden*l.batch*l.steps; for (i = l.steps-1; i >= 0; --i) { copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); s.input = l.state_gpu; s.delta = self_layer.delta_gpu; backward_connected_layer_gpu(output_layer, s); l.state_gpu -= l.hidden*l.batch; s.input = l.state_gpu; s.delta = self_layer.delta_gpu - l.hidden*l.batch; if (i == 0) s.delta = 0; backward_connected_layer_gpu(self_layer, s); copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); s.input = state.input + i*l.inputs*l.batch; if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; else s.delta = 0; backward_connected_layer_gpu(input_layer, s); increment_layer(&input_layer, -1); increment_layer(&self_layer, -1); increment_layer(&output_layer, -1); } } #endif