extern "C" { #include "convolutional_layer.h" #include "gemm.h" #include "blas.h" #include "im2col.h" #include "col2im.h" #include "utils.h" #include "cuda.h" } __global__ void bias_output_kernel(float *output, float *biases, int n, int size) { int offset = blockIdx.x * blockDim.x + threadIdx.x; int filter = blockIdx.y; int batch = blockIdx.z; if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter]; } void bias_output_gpu(float *output, float *biases, int batch, int n, int size) { dim3 dimGrid((size-1)/BLOCK + 1, n, batch); dim3 dimBlock(BLOCK, 1, 1); bias_output_kernel<<>>(output, biases, n, size); check_error(cudaPeekAtLastError()); } __global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size) { __shared__ float part[BLOCK]; int i,b; int filter = blockIdx.x; int p = threadIdx.x; float sum = 0; for(b = 0; b < batch; ++b){ for(i = 0; i < size; i += BLOCK){ int index = p + i + size*(filter + n*b); sum += (p+i < size) ? delta[index] : 0; } } part[p] = sum; __syncthreads(); if(p == 0){ for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; } } void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) { backward_bias_kernel<<>>(bias_updates, delta, batch, n, size); check_error(cudaPeekAtLastError()); } void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state) { int i; int m = layer.n; int k = layer.size*layer.size*layer.c; int n = convolutional_out_height(layer)* convolutional_out_width(layer); bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); for(i = 0; i < layer.batch; ++i){ im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); float * a = layer.filters_gpu; float * b = layer.col_image_gpu; float * c = layer.output_gpu; gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); } activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation); } void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state) { int i; int m = layer.n; int n = layer.size*layer.size*layer.c; int k = convolutional_out_height(layer)* convolutional_out_width(layer); gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); for(i = 0; i < layer.batch; ++i){ float * a = layer.delta_gpu; float * b = layer.col_image_gpu; float * c = layer.filter_updates_gpu; im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); if(state.delta){ float * a = layer.filters_gpu; float * b = layer.delta_gpu; float * c = layer.col_image_gpu; gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w); } } } void pull_convolutional_layer(convolutional_layer layer) { cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); } void push_convolutional_layer(convolutional_layer layer) { cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); cuda_push_array(layer.biases_gpu, layer.biases, layer.n); cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); } void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) { int size = layer.size*layer.size*layer.c*layer.n; axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); scal_ongpu(size, momentum, layer.filter_updates_gpu, 1); }