#include "data.h" #include "utils.h" #include "image.h" #include #include #include list *get_paths(char *filename) { char *path; FILE *file = fopen(filename, "r"); if(!file) file_error(filename); list *lines = make_list(); while((path=fgetl(file))){ list_insert(lines, path); } fclose(file); return lines; } void fill_truth_det(char *path, float *truth) { find_replace(path, "imgs", "det"); find_replace(path, ".JPEG", ".txt"); } void fill_truth(char *path, char **labels, int k, float *truth) { int i; memset(truth, 0, k*sizeof(float)); for(i = 0; i < k; ++i){ if(strstr(path, labels[i])){ truth[i] = 1; } } } data load_data_image_paths(char **paths, int n, char **labels, int k, int h, int w) { int i; data d; d.shallow = 0; d.X.rows = n; d.X.vals = calloc(d.X.rows, sizeof(float*)); d.X.cols = 0; d.y = make_matrix(n, k); for(i = 0; i < n; ++i){ image im = load_image_color(paths[i], h, w); d.X.vals[i] = im.data; d.X.cols = im.h*im.w*im.c; } for(i = 0; i < n; ++i){ fill_truth(paths[i], labels, k, d.y.vals[i]); } return d; } data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w) { list *plist = get_paths(filename); char **paths = (char **)list_to_array(plist); data d = load_data_image_paths(paths, plist->size, labels, k, h, w); free_list_contents(plist); free_list(plist); free(paths); return d; } char **get_labels(char *filename) { list *plist = get_paths(filename); char **labels = (char **)list_to_array(plist); free_list(plist); return labels; } void free_data(data d) { if(!d.shallow){ free_matrix(d.X); free_matrix(d.y); }else{ free(d.X.vals); free(d.y.vals); } } data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w) { list *plist = get_paths(filename); char **paths = (char **)list_to_array(plist); int start = part*plist->size/total; int end = (part+1)*plist->size/total; data d = load_data_image_paths(paths+start, end-start, labels, k, h, w); free_list_contents(plist); free_list(plist); free(paths); return d; } data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w) { char **random_paths = calloc(n, sizeof(char*)); int i; for(i = 0; i < n; ++i){ int index = rand()%m; random_paths[i] = paths[index]; if(i == 0) printf("%s\n", paths[index]); } data d = load_data_image_paths(random_paths, n, labels, k, h, w); free(random_paths); return d; } data load_data_image_pathfile_random(char *filename, int n, char **labels, int k, int h, int w) { int i; list *plist = get_paths(filename); char **paths = (char **)list_to_array(plist); char **random_paths = calloc(n, sizeof(char*)); for(i = 0; i < n; ++i){ int index = rand()%plist->size; random_paths[i] = paths[index]; if(i == 0) printf("%s\n", paths[index]); } data d = load_data_image_paths(random_paths, n, labels, k, h, w); free_list_contents(plist); free_list(plist); free(paths); free(random_paths); return d; } data load_categorical_data_csv(char *filename, int target, int k) { data d; d.shallow = 0; matrix X = csv_to_matrix(filename); float *truth_1d = pop_column(&X, target); float **truth = one_hot_encode(truth_1d, X.rows, k); matrix y; y.rows = X.rows; y.cols = k; y.vals = truth; d.X = X; d.y = y; free(truth_1d); return d; } data load_cifar10_data(char *filename) { data d; d.shallow = 0; long i,j; matrix X = make_matrix(10000, 3072); matrix y = make_matrix(10000, 10); d.X = X; d.y = y; FILE *fp = fopen(filename, "rb"); if(!fp) file_error(filename); for(i = 0; i < 10000; ++i){ unsigned char bytes[3073]; fread(bytes, 1, 3073, fp); int class = bytes[0]; y.vals[i][class] = 1; for(j = 0; j < X.cols; ++j){ X.vals[i][j] = (double)bytes[j+1]; } } translate_data_rows(d, -144); scale_data_rows(d, 1./128); //normalize_data_rows(d); fclose(fp); return d; } void get_random_batch(data d, int n, float *X, float *y) { int j; for(j = 0; j < n; ++j){ int index = rand()%d.X.rows; memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); } } void get_next_batch(data d, int n, int offset, float *X, float *y) { int j; for(j = 0; j < n; ++j){ int index = offset + j; memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); } } data load_all_cifar10() { data d; d.shallow = 0; int i,j,b; matrix X = make_matrix(50000, 3072); matrix y = make_matrix(50000, 10); d.X = X; d.y = y; for(b = 0; b < 5; ++b){ char buff[256]; sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1); FILE *fp = fopen(buff, "rb"); if(!fp) file_error(buff); for(i = 0; i < 10000; ++i){ unsigned char bytes[3073]; fread(bytes, 1, 3073, fp); int class = bytes[0]; y.vals[i+b*10000][class] = 1; for(j = 0; j < X.cols; ++j){ X.vals[i+b*10000][j] = (double)bytes[j+1]; } } fclose(fp); } //normalize_data_rows(d); translate_data_rows(d, -144); scale_data_rows(d, 1./128); return d; } void randomize_data(data d) { int i; for(i = d.X.rows-1; i > 0; --i){ int index = rand()%i; float *swap = d.X.vals[index]; d.X.vals[index] = d.X.vals[i]; d.X.vals[i] = swap; swap = d.y.vals[index]; d.y.vals[index] = d.y.vals[i]; d.y.vals[i] = swap; } } void scale_data_rows(data d, float s) { int i; for(i = 0; i < d.X.rows; ++i){ scale_array(d.X.vals[i], d.X.cols, s); } } void translate_data_rows(data d, float s) { int i; for(i = 0; i < d.X.rows; ++i){ translate_array(d.X.vals[i], d.X.cols, s); } } void normalize_data_rows(data d) { int i; for(i = 0; i < d.X.rows; ++i){ normalize_array(d.X.vals[i], d.X.cols); } } data *split_data(data d, int part, int total) { data *split = calloc(2, sizeof(data)); int i; int start = part*d.X.rows/total; int end = (part+1)*d.X.rows/total; data train; data test; train.shallow = test.shallow = 1; test.X.rows = test.y.rows = end-start; train.X.rows = train.y.rows = d.X.rows - (end-start); train.X.cols = test.X.cols = d.X.cols; train.y.cols = test.y.cols = d.y.cols; train.X.vals = calloc(train.X.rows, sizeof(float*)); test.X.vals = calloc(test.X.rows, sizeof(float*)); train.y.vals = calloc(train.y.rows, sizeof(float*)); test.y.vals = calloc(test.y.rows, sizeof(float*)); for(i = 0; i < start; ++i){ train.X.vals[i] = d.X.vals[i]; train.y.vals[i] = d.y.vals[i]; } for(i = start; i < end; ++i){ test.X.vals[i-start] = d.X.vals[i]; test.y.vals[i-start] = d.y.vals[i]; } for(i = end; i < d.X.rows; ++i){ train.X.vals[i-(end-start)] = d.X.vals[i]; train.y.vals[i-(end-start)] = d.y.vals[i]; } split[0] = train; split[1] = test; return split; }