#include "connected_layer.h" #include "convolutional_layer.h" #include "maxpool_layer.h" #include "network.h" #include "image.h" #include "parser.h" #include "data.h" #include "matrix.h" #include "utils.h" #include "mini_blas.h" #include "server.h" #include #include #include #define _GNU_SOURCE #include void test_convolve() { image dog = load_image("dog.jpg",300,400); printf("dog channels %d\n", dog.c); image kernel = make_random_image(3,3,dog.c); image edge = make_image(dog.h, dog.w, 1); int i; clock_t start = clock(), end; for(i = 0; i < 1000; ++i){ convolve(dog, kernel, 1, 0, edge, 1); } end = clock(); printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); show_image_layers(edge, "Test Convolve"); } #ifdef GPU void test_convolutional_layer() { /* int i; image dog = load_image("data/dog.jpg",224,224); network net = parse_network_cfg("cfg/convolutional.cfg"); // data test = load_cifar10_data("data/cifar10/test_batch.bin"); // float *X = calloc(net.batch*test.X.cols, sizeof(float)); // float *y = calloc(net.batch*test.y.cols, sizeof(float)); int in_size = get_network_input_size(net)*net.batch; int del_size = get_network_output_size_layer(net, 0)*net.batch; int size = get_network_output_size(net)*net.batch; float *X = calloc(in_size, sizeof(float)); float *y = calloc(size, sizeof(float)); for(i = 0; i < in_size; ++i){ X[i] = dog.data[i%get_network_input_size(net)]; } // get_batch(test, net.batch, X, y); clock_t start, end; cl_mem input_cl = cl_make_array(X, in_size); cl_mem truth_cl = cl_make_array(y, size); forward_network_gpu(net, input_cl, truth_cl, 1); start = clock(); forward_network_gpu(net, input_cl, truth_cl, 1); end = clock(); float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; printf("forward gpu: %f sec\n", gpu_sec); start = clock(); backward_network_gpu(net, input_cl); end = clock(); gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; printf("backward gpu: %f sec\n", gpu_sec); //float gpu_cost = get_network_cost(net); float *gpu_out = calloc(size, sizeof(float)); memcpy(gpu_out, get_network_output(net), size*sizeof(float)); float *gpu_del = calloc(del_size, sizeof(float)); memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); */ /* start = clock(); forward_network(net, X, y, 1); backward_network(net, X); float cpu_cost = get_network_cost(net); end = clock(); float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC; float *cpu_out = calloc(size, sizeof(float)); memcpy(cpu_out, get_network_output(net), size*sizeof(float)); float *cpu_del = calloc(del_size, sizeof(float)); memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); float sum = 0; float del_sum = 0; for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2); for(i = 0; i < del_size; ++i) { //printf("%f %f\n", cpu_del[i], gpu_del[i]); del_sum += pow(cpu_del[i] - gpu_del[i], 2); } printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost); printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size); */ } /* void test_col2im() { float col[] = {1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2}; float im[16] = {0}; int batch = 1; int channels = 1; int height=4; int width=4; int ksize = 3; int stride = 1; int pad = 0; //col2im_gpu(col, batch, // channels, height, width, // ksize, stride, pad, im); int i; for(i = 0; i < 16; ++i)printf("%f,", im[i]); printf("\n"); float data_im[] = { 1,2,3,4, 5,6,7,8, 9,10,11,12 }; float data_col[18] = {0}; im2col_cpu(data_im, batch, channels, height, width, ksize, stride, pad, data_col) ; for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); printf("\n"); } */ #endif void test_convolve_matrix() { image dog = load_image("dog.jpg",300,400); printf("dog channels %d\n", dog.c); int size = 11; int stride = 4; int n = 40; float *filters = make_random_image(size, size, dog.c*n).data; int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); int mh = (size*size*dog.c); float *matrix = calloc(mh*mw, sizeof(float)); image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); int i; clock_t start = clock(), end; for(i = 0; i < 1000; ++i){ //im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix); gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); } end = clock(); printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); show_image_layers(edge, "Test Convolve"); cvWaitKey(0); } void test_color() { image dog = load_image("test_color.png", 300, 400); show_image_layers(dog, "Test Color"); } void verify_convolutional_layer() { /* srand(0); int i; int n = 1; int stride = 1; int size = 3; float eps = .00000001; image test = make_random_image(5,5, 1); convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU,0,0,0); image out = get_convolutional_image(layer); float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); forward_convolutional_layer(layer, test.data); image base = copy_image(out); for(i = 0; i < test.h*test.w*test.c; ++i){ test.data[i] += eps; forward_convolutional_layer(layer, test.data); image partial = copy_image(out); subtract_image(partial, base); scale_image(partial, 1/eps); jacobian[i] = partial.data; test.data[i] -= eps; } float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); image in_delta = make_image(test.h, test.w, test.c); image out_delta = get_convolutional_delta(layer); for(i = 0; i < out.h*out.w*out.c; ++i){ out_delta.data[i] = 1; backward_convolutional_layer(layer, in_delta.data); image partial = copy_image(in_delta); jacobian2[i] = partial.data; out_delta.data[i] = 0; } int j; float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); for(i = 0; i < test.h*test.w*test.c; ++i){ for(j =0 ; j < out.h*out.w*out.c; ++j){ j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); } } image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); show_image(mj1, "forward jacobian"); show_image(mj2, "backward jacobian"); */ } void test_load() { image dog = load_image("dog.jpg", 300, 400); show_image(dog, "Test Load"); show_image_layers(dog, "Test Load"); } void test_upsample() { image dog = load_image("dog.jpg", 300, 400); int n = 3; image up = make_image(n*dog.h, n*dog.w, dog.c); upsample_image(dog, n, up); show_image(up, "Test Upsample"); show_image_layers(up, "Test Upsample"); } void test_rotate() { int i; image dog = load_image("dog.jpg",300,400); clock_t start = clock(), end; for(i = 0; i < 1001; ++i){ rotate_image(dog); } end = clock(); printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); show_image(dog, "Test Rotate"); image random = make_random_image(3,3,3); show_image(random, "Test Rotate Random"); rotate_image(random); show_image(random, "Test Rotate Random"); rotate_image(random); show_image(random, "Test Rotate Random"); } void test_parser() { network net = parse_network_cfg("cfg/trained_imagenet.cfg"); save_network(net, "cfg/trained_imagenet_smaller.cfg"); } void train_asirra() { network net = parse_network_cfg("cfg/imagenet.cfg"); int imgs = 1000/net.batch+1; //imgs = 1; srand(2222222); int i = 0; char *labels[] = {"cat","dog"}; list *plist = get_paths("data/assira/train.list"); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; while(1){ i += 1; time=clock(); data train = load_data_random(imgs*net.batch, paths, m, labels, 2, 256, 256); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); //float loss = train_network_data(net, train, imgs); float loss = 0; printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time)); free_data(train); if(i%10==0){ char buff[256]; sprintf(buff, "cfg/asirra_backup_%d.cfg", i); save_network(net, buff); } //lr *= .99; } } void train_detection_net() { float avg_loss = 1; //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); network net = parse_network_cfg("cfg/detnet.cfg"); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1000/net.batch+1; //srand(time(0)); srand(23410); int i = 0; list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; while(1){ i += 1; time=clock(); data train = load_data_detection_random(imgs*net.batch, paths, plist->size, 256, 256, 8, 8, 256); //translate_data_rows(train, -144); /* image im = float_to_image(256, 256, 3, train.X.vals[0]); float *truth = train.y.vals[0]; int j; int r, c; for(r = 0; r < 8; ++r){ for(c = 0; c < 8; ++c){ j = (r*8 + c) * 5; if(truth[j]){ int d = 256/8; int y = r*d+truth[j+1]*d; int x = c*d+truth[j+2]*d; int h = truth[j+3]*256; int w = truth[j+4]*256; printf("%f %f %f %f\n", truth[j+1], truth[j+2], truth[j+3], truth[j+4]); printf("%d %d %d %d\n", x, y, w, h); printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); } } } show_image(im, "box"); cvWaitKey(0); */ normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); #ifdef GPU float loss = train_network_data_gpu(net, train, imgs); avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); #endif free_data(train); if(i%10==0){ char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); save_network(net, buff); } } } void train_imagenet_distributed(char *address) { float avg_loss = 1; srand(time(0)); network net = parse_network_cfg("cfg/alexnet.client"); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1000/net.batch+1; imgs = 1; int i = 0; char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; while(1){ i += 1; time=clock(); data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); //translate_data_rows(train, -144); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); #ifdef GPU float loss = train_network_data_gpu(net, train, imgs); client_update(net, address); avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); #endif free_data(train); if(i%10==0){ char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); save_network(net, buff); } } } void train_imagenet() { float avg_loss = 1; //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); srand(time(0)); network net = parse_network_cfg("cfg/alexnet.cfg"); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1000/net.batch+1; //imgs=1; int i = 0; char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; while(1){ i += 1; time=clock(); data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); //translate_data_rows(train, -144); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); #ifdef GPU float loss = train_network_data_gpu(net, train, imgs); avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); #endif free_data(train); if(i%10==0){ char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); save_network(net, buff); } } } void validate_imagenet(char *filename) { int i; network net = parse_network_cfg(filename); srand(time(0)); char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list"); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; float avg_acc = 0; int splits = 50; for(i = 0; i < splits; ++i){ time=clock(); char **part = paths+(i*m/splits); int num = (i+1)*m/splits - i*m/splits; data val = load_data(part, num, labels, 1000, 256, 256); normalize_data_rows(val); printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); time=clock(); #ifdef GPU float acc = network_accuracy_gpu(net, val); avg_acc += acc; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows); #endif free_data(val); } } void draw_detection(image im, float *box) { int j; int r, c; for(r = 0; r < 8; ++r){ for(c = 0; c < 8; ++c){ j = (r*8 + c) * 5; printf("Prob: %f\n", box[j]); if(box[j] > .01){ int d = 256/8; int y = r*d+box[j+1]*d; int x = c*d+box[j+2]*d; int h = box[j+3]*256; int w = box[j+4]*256; printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); printf("%d %d %d %d\n", x, y, w, h); printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); } } } show_image(im, "box"); cvWaitKey(0); } void test_detection() { network net = parse_network_cfg("cfg/detnet.test"); srand(2222222); clock_t time; char filename[256]; while(1){ fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, 256, 256); z_normalize_image(im); printf("%d %d %d\n", im.h, im.w, im.c); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); draw_detection(im, predictions); free_image(im); } } void test_imagenet() { network net = parse_network_cfg("cfg/imagenet_test.cfg"); //imgs=1; srand(2222222); int i = 0; char **names = get_labels("cfg/shortnames.txt"); clock_t time; char filename[256]; int indexes[10]; while(1){ fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, 256, 256); z_normalize_image(im); printf("%d %d %d\n", im.h, im.w, im.c); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); top_predictions(net, 10, indexes); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); for(i = 0; i < 10; ++i){ int index = indexes[i]; printf("%s: %f\n", names[index], predictions[index]); } free_image(im); } } void test_visualize(char *filename) { network net = parse_network_cfg(filename); visualize_network(net); cvWaitKey(0); } void test_cifar10() { network net = parse_network_cfg("cfg/cifar10_part5.cfg"); data test = load_cifar10_data("data/cifar10/test_batch.bin"); clock_t start = clock(), end; float test_acc = network_accuracy(net, test); end = clock(); printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC); visualize_network(net); cvWaitKey(0); } void train_cifar10() { srand(555555); network net = parse_network_cfg("cfg/cifar10.cfg"); data test = load_cifar10_data("data/cifar10/test_batch.bin"); int count = 0; int iters = 10000/net.batch; data train = load_all_cifar10(); while(++count <= 10000){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); end = clock(); //visualize_network(net); //cvWaitKey(5000); //float test_acc = network_accuracy(net, test); //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); if(count%10 == 0){ float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); char buff[256]; sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count); save_network(net, buff); }else{ printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); } } free_data(train); } void test_vince() { network net = parse_network_cfg("cfg/vince.cfg"); data train = load_categorical_data_csv("images/vince.txt", 144, 2); normalize_data_rows(train); int count = 0; //float lr = .00005; //float momentum = .9; //float decay = 0.0001; //decay = 0; int batch = 10000; while(++count <= 10000){ float loss = train_network_sgd(net, train, batch); printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); } } void test_nist_single() { srand(222222); network net = parse_network_cfg("cfg/nist_single.cfg"); data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10); normalize_data_rows(train); float loss = train_network_sgd(net, train, 1); printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay); } void test_nist() { srand(222222); network net = parse_network_cfg("cfg/nist_final.cfg"); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); translate_data_rows(test, -144); clock_t start = clock(), end; float test_acc = network_accuracy_multi(net, test,16); end = clock(); printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); } void train_nist() { srand(222222); network net = parse_network_cfg("cfg/nist.cfg"); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(train); normalize_data_rows(test); int count = 0; int iters = 50000/net.batch; iters = 1000/net.batch + 1; while(++count <= 2000){ clock_t start = clock(), end; float loss = train_network_sgd_gpu(net, train, iters); end = clock(); float test_acc = network_accuracy_gpu(net, test); //float test_acc = 0; printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); } } void test_ensemble() { int i; srand(888888); data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); normalize_data_rows(d); data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); normalize_data_rows(test); data train = d; // data *split = split_data(d, 1, 10); // data train = split[0]; // data test = split[1]; matrix prediction = make_matrix(test.y.rows, test.y.cols); int n = 30; for(i = 0; i < n; ++i){ int count = 0; float lr = .0005; float momentum = .9; float decay = .01; network net = parse_network_cfg("nist.cfg"); while(++count <= 15){ float acc = train_network_sgd(net, train, train.X.rows); printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); lr /= 2; } matrix partial = network_predict_data(net, test); float acc = matrix_accuracy(test.y, partial); printf("Model Accuracy: %lf\n", acc); matrix_add_matrix(partial, prediction); acc = matrix_accuracy(test.y, prediction); printf("Current Ensemble Accuracy: %lf\n", acc); free_matrix(partial); } float acc = matrix_accuracy(test.y, prediction); printf("Full Ensemble Accuracy: %lf\n", acc); } void test_random_classify() { network net = parse_network_cfg("connected.cfg"); matrix m = csv_to_matrix("train.csv"); //matrix ho = hold_out_matrix(&m, 2500); float *truth = pop_column(&m, 0); //float *ho_truth = pop_column(&ho, 0); int i; clock_t start = clock(), end; int count = 0; while(++count <= 300){ for(i = 0; i < m.rows; ++i){ int index = rand()%m.rows; //image p = float_to_image(1690,1,1,m.vals[index]); //normalize_image(p); forward_network(net, m.vals[index], 0, 1); float *out = get_network_output(net); float *delta = get_network_delta(net); //printf("%f\n", out[0]); delta[0] = truth[index] - out[0]; // printf("%f\n", delta[0]); //printf("%f %f\n", truth[index], out[0]); //backward_network(net, m.vals[index], ); update_network(net); } //float test_acc = error_network(net, m, truth); //float valid_acc = error_network(net, ho, ho_truth); //printf("%f, %f\n", test_acc, valid_acc); //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); //if(valid_acc > .70) break; } end = clock(); FILE *fp = fopen("submission/out.txt", "w"); matrix test = csv_to_matrix("test.csv"); truth = pop_column(&test, 0); for(i = 0; i < test.rows; ++i){ forward_network(net, test.vals[i],0, 0); float *out = get_network_output(net); if(fabs(out[0]) < .5) fprintf(fp, "0\n"); else fprintf(fp, "1\n"); } fclose(fp); printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); } void test_split() { data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); data *split = split_data(train, 0, 13); printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); } /* void test_im2row() { int h = 20; int w = 20; int c = 3; int stride = 1; int size = 11; image test = make_random_image(h,w,c); int mc = 1; int mw = ((h-size)/stride+1)*((w-size)/stride+1); int mh = (size*size*c); int msize = mc*mw*mh; float *matrix = calloc(msize, sizeof(float)); int i; for(i = 0; i < 1000; ++i){ //im2col_cpu(test.data,1, c, h, w, size, stride, 0, matrix); //image render = float_to_image(mh, mw, mc, matrix); } } */ void flip_network() { network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg"); save_network(net, "cfg/voc_imagenet_rev.cfg"); } void visualize_cat() { network net = parse_network_cfg("cfg/voc_imagenet.cfg"); image im = load_image("data/cat.png", 0, 0); printf("Processing %dx%d image\n", im.h, im.w); resize_network(net, im.h, im.w, im.c); forward_network(net, im.data, 0, 0); visualize_network(net); cvWaitKey(0); } void test_gpu_net() { srand(222222); network net = parse_network_cfg("cfg/nist.cfg"); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); translate_data_rows(train, -144); translate_data_rows(test, -144); int count = 0; int iters = 1000/net.batch; while(++count <= 5){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); end = clock(); float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); } #ifdef GPU count = 0; srand(222222); net = parse_network_cfg("cfg/nist.cfg"); while(++count <= 5){ clock_t start = clock(), end; float loss = train_network_sgd_gpu(net, train, iters); end = clock(); float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); } #endif } void test_correct_alexnet() { char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; int count = 0; srand(222222); network net = parse_network_cfg("cfg/alexnet.test"); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1000/net.batch+1; imgs = 1; while(++count <= 5){ time=clock(); data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); //translate_data_rows(train, -144); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network_data_cpu(net, train, imgs); printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); free_data(train); } #ifdef GPU count = 0; srand(222222); net = parse_network_cfg("cfg/alexnet.test"); while(++count <= 5){ time=clock(); data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); //translate_data_rows(train, -144); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network_data_gpu(net, train, imgs); printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); free_data(train); } #endif } void run_server() { srand(time(0)); network net = parse_network_cfg("cfg/alexnet.server"); server_update(net); } void test_client() { network net = parse_network_cfg("cfg/alexnet.client"); clock_t time=clock(); client_update(net, "localhost"); printf("1\n"); client_update(net, "localhost"); printf("2\n"); client_update(net, "localhost"); printf("3\n"); printf("Transfered: %lf seconds\n", sec(clock()-time)); } int main(int argc, char *argv[]) { if(argc < 2){ fprintf(stderr, "usage: %s \n", argv[0]); return 0; } if(0==strcmp(argv[1], "train")) train_imagenet(); else if(0==strcmp(argv[1], "detection")) train_detection_net(); else if(0==strcmp(argv[1], "asirra")) train_asirra(); else if(0==strcmp(argv[1], "nist")) train_nist(); else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); else if(0==strcmp(argv[1], "test")) test_imagenet(); else if(0==strcmp(argv[1], "server")) run_server(); else if(0==strcmp(argv[1], "detect")) test_detection(); #ifdef GPU else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); #endif else if(argc < 3){ fprintf(stderr, "usage: %s \n", argv[0]); return 0; } else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); fprintf(stderr, "Success!\n"); return 0; } /* void visualize_imagenet_topk(char *filename) { int i,j,k,l; int topk = 10; network net = parse_network_cfg("cfg/voc_imagenet.cfg"); list *plist = get_paths(filename); node *n = plist->front; int h = voc_size(1), w = voc_size(1); int num = get_network_image(net).c; image **vizs = calloc(num, sizeof(image*)); float **score = calloc(num, sizeof(float *)); for(i = 0; i < num; ++i){ vizs[i] = calloc(topk, sizeof(image)); for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3); score[i] = calloc(topk, sizeof(float)); } int count = 0; while(n){ ++count; char *image_path = (char *)n->val; image im = load_image(image_path, 0, 0); n = n->next; if(im.h < 200 || im.w < 200) continue; printf("Processing %dx%d image\n", im.h, im.w); resize_network(net, im.h, im.w, im.c); //scale_image(im, 1./255); translate_image(im, -144); forward_network(net, im.data, 0, 0); image out = get_network_image(net); int dh = (im.h - h)/(out.h-1); int dw = (im.w - w)/(out.w-1); //printf("%d %d\n", dh, dw); for(k = 0; k < out.c; ++k){ float topv = 0; int topi = -1; int topj = -1; for(i = 0; i < out.h; ++i){ for(j = 0; j < out.w; ++j){ float val = get_pixel(out, i, j, k); if(val > topv){ topv = val; topi = i; topj = j; } } } if(topv){ image sub = get_sub_image(im, dh*topi, dw*topj, h, w); for(l = 0; l < topk; ++l){ if(topv > score[k][l]){ float swap = score[k][l]; score[k][l] = topv; topv = swap; image swapi = vizs[k][l]; vizs[k][l] = sub; sub = swapi; } } free_image(sub); } } free_image(im); if(count%50 == 0){ image grid = grid_images(vizs, num, topk); //show_image(grid, "IMAGENET Visualization"); save_image(grid, "IMAGENET Grid Single Nonorm"); free_image(grid); } } //cvWaitKey(0); } void visualize_imagenet_features(char *filename) { int i,j,k; network net = parse_network_cfg("cfg/voc_imagenet.cfg"); list *plist = get_paths(filename); node *n = plist->front; int h = voc_size(1), w = voc_size(1); int num = get_network_image(net).c; image *vizs = calloc(num, sizeof(image)); for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3); while(n){ char *image_path = (char *)n->val; image im = load_image(image_path, 0, 0); printf("Processing %dx%d image\n", im.h, im.w); resize_network(net, im.h, im.w, im.c); forward_network(net, im.data, 0, 0); image out = get_network_image(net); int dh = (im.h - h)/h; int dw = (im.w - w)/w; for(i = 0; i < out.h; ++i){ for(j = 0; j < out.w; ++j){ image sub = get_sub_image(im, dh*i, dw*j, h, w); for(k = 0; k < out.c; ++k){ float val = get_pixel(out, i, j, k); //printf("%f, ", val); image sub_c = copy_image(sub); scale_image(sub_c, val); add_into_image(sub_c, vizs[k], 0, 0); free_image(sub_c); } free_image(sub); } } //printf("\n"); show_images(vizs, 10, "IMAGENET Visualization"); cvWaitKey(1000); n = n->next; } cvWaitKey(0); } void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip, int interval) { int i,j; network net = parse_network_cfg("cfg/voc_imagenet.cfg"); char image_path[1024]; sprintf(image_path, "%s/%s",image_dir, image_file); char out_path[1024]; if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file); else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file); printf("%s\n", image_file); IplImage* src = 0; if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); if(flip)cvFlip(src, 0, 1); int w = src->width; int h = src->height; int sbin = 8; double scale = pow(2., 1./interval); int m = (w= interval"); image *ims = calloc(max_scale+interval, sizeof(image)); for(i = 0; i < interval; ++i){ double factor = 1./pow(scale, i); double ih = round(h*factor); double iw = round(w*factor); int ex_h = round(ih/4.) - 2; int ex_w = round(iw/4.) - 2; ims[i] = features_output_size(net, src, ex_h, ex_w); ih = round(h*factor); iw = round(w*factor); ex_h = round(ih/8.) - 2; ex_w = round(iw/8.) - 2; ims[i+interval] = features_output_size(net, src, ex_h, ex_w); for(j = i+interval; j < max_scale; j += interval){ factor /= 2.; ih = round(h*factor); iw = round(w*factor); ex_h = round(ih/8.) - 2; ex_w = round(iw/8.) - 2; ims[j+interval] = features_output_size(net, src, ex_h, ex_w); } } FILE *fp = fopen(out_path, "w"); if(fp == 0) file_error(out_path); for(i = 0; i < max_scale+interval; ++i){ image out = ims[i]; fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w); for(j = 0; j < out.c*out.h*out.w; ++j){ if(j != 0)fprintf(fp, ","); float o = out.data[j]; if(o < 0) o = 0; fprintf(fp, "%g", o); } fprintf(fp, "\n"); free_image(out); } free(ims); fclose(fp); cvReleaseImage(&src); } void test_distribution() { IplImage* img = 0; if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg"); network net = parse_network_cfg("cfg/voc_features.cfg"); int h = img->height/8-2; int w = img->width/8-2; image out = features_output_size(net, img, h, w); int c = out.c; out.c = 1; show_image(out, "output"); out.c = c; image input = ipl_to_image(img); show_image(input, "input"); CvScalar s; int i,j; image affects = make_image(input.h, input.w, 1); int count = 0; for(i = 0; iheight; i += 1){ for(j = 0; j < img->width; j += 1){ IplImage *copy = cvCloneImage(img); s=cvGet2D(copy,i,j); // get the (i,j) pixel value printf("%d/%d\n", count++, img->height*img->width); s.val[0]=0; s.val[1]=0; s.val[2]=0; cvSet2D(copy,i,j,s); // set the (i,j) pixel value image mod = features_output_size(net, copy, h, w); image dist = image_distance(out, mod); show_image(affects, "affects"); cvWaitKey(1); cvReleaseImage(©); //affects.data[i*affects.w + j] += dist.data[3*dist.w+5]; affects.data[i*affects.w + j] += dist.data[1*dist.w+1]; free_image(mod); free_image(dist); } } show_image(affects, "Origins"); cvWaitKey(0); cvWaitKey(0); } */