#include "softmax_layer.h" #include "blas.h" #include "cuda.h" #include #include #include #include #include softmax_layer make_softmax_layer(int batch, int inputs, int groups) { assert(inputs%groups == 0); fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); softmax_layer l = {0}; l.type = SOFTMAX; l.batch = batch; l.groups = groups; l.inputs = inputs; l.outputs = inputs; l.output = calloc(inputs*batch, sizeof(float)); l.delta = calloc(inputs*batch, sizeof(float)); l.forward = forward_softmax_layer; l.backward = backward_softmax_layer; #ifdef GPU l.forward_gpu = forward_softmax_layer_gpu; l.backward_gpu = backward_softmax_layer_gpu; l.output_gpu = cuda_make_array(l.output, inputs*batch); l.delta_gpu = cuda_make_array(l.delta, inputs*batch); #endif return l; } void forward_softmax_layer(const softmax_layer l, network_state state) { int b; int inputs = l.inputs / l.groups; int batch = l.batch * l.groups; if(l.softmax_tree){ for(b = 0; b < batch; ++b){ int i; int count = 0; for(i = 0; i < l.softmax_tree->groups; ++i){ int group_size = l.softmax_tree->group_size[i]; softmax(state.input+b*inputs + count, group_size, l.temperature, l.output+b*inputs + count); count += group_size; } } } else { for(b = 0; b < batch; ++b){ softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs); } } } void backward_softmax_layer(const softmax_layer l, network_state state) { int i; for(i = 0; i < l.inputs*l.batch; ++i){ state.delta[i] += l.delta[i]; } } #ifdef GPU void pull_softmax_layer_output(const softmax_layer layer) { cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch); } void forward_softmax_layer_gpu(const softmax_layer l, network_state state) { int inputs = l.inputs / l.groups; int batch = l.batch * l.groups; int b; if(l.softmax_tree){ if(0){ float *buff = calloc(inputs * batch, sizeof(float)); cuda_pull_array(state.input, buff, batch * inputs); state.input = buff; forward_softmax_layer(l, state); cuda_push_array(l.output_gpu, l.output, batch*inputs); free(buff); } else { int i; const int nstreams = 32; cudaStream_t streams[nstreams]; for (i = 0; i < nstreams; ++i) { cudaStreamCreate(&streams[i]); } for (b = 0; b < batch; ++b) { int i; int count = 0; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; softmax_gpu(state.input+b*inputs + count, group_size, 1, l.temperature, l.output_gpu+b*inputs + count, streams[(b*l.softmax_tree->groups + i) % nstreams]); count += group_size; } } for(i = 0; i < nstreams; ++i){ cudaStreamDestroy(streams[i]); } } } else { softmax_gpu(state.input, inputs, batch, l.temperature, l.output_gpu, 0); } } void backward_softmax_layer_gpu(const softmax_layer layer, network_state state) { axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1); } #endif