#ifdef __cplusplus extern "C" { #endif int gpu_index = 0; #ifdef __cplusplus } #endif // __cplusplus #ifdef GPU #include "dark_cuda.h" #include "utils.h" #include "blas.h" #include "assert.h" #include #include #include #include #pragma comment(lib, "cuda.lib") #ifdef CUDNN #ifndef USE_CMAKE_LIBS #pragma comment(lib, "cudnn.lib") #endif // USE_CMAKE_LIBS #endif // CUDNN #if defined(CUDNN_HALF) && !defined(CUDNN) #error "If you set CUDNN_HALF=1 then you must set CUDNN=1" #endif void cuda_set_device(int n) { gpu_index = n; cudaError_t status = cudaSetDevice(n); if(status != cudaSuccess) CHECK_CUDA(status); } int cuda_get_device() { int n = 0; cudaError_t status = cudaGetDevice(&n); CHECK_CUDA(status); return n; } void *cuda_get_context() { CUcontext pctx; CUresult status = cuCtxGetCurrent(&pctx); if(status != CUDA_SUCCESS) fprintf(stderr, " Error: cuCtxGetCurrent() is failed \n"); return (void *)pctx; } void check_error(cudaError_t status) { cudaError_t status2 = cudaGetLastError(); if (status != cudaSuccess) { const char *s = cudaGetErrorString(status); char buffer[256]; printf("CUDA Error: %s\n", s); snprintf(buffer, 256, "CUDA Error: %s", s); #ifdef WIN32 getchar(); #endif error(buffer); } if (status2 != cudaSuccess) { const char *s = cudaGetErrorString(status2); char buffer[256]; printf("CUDA Error Prev: %s\n", s); snprintf(buffer, 256, "CUDA Error Prev: %s", s); #ifdef WIN32 getchar(); #endif error(buffer); } } void check_error_extended(cudaError_t status, const char *file, int line, const char *date_time) { if (status != cudaSuccess) { printf("CUDA status Error: file: %s() : line: %d : build time: %s \n", file, line, date_time); check_error(status); } #ifdef DEBUG status = cudaDeviceSynchronize(); if (status != cudaSuccess) printf("CUDA status = cudaDeviceSynchronize() Error: file: %s() : line: %d : build time: %s \n", file, line, date_time); #endif check_error(status); } dim3 cuda_gridsize(size_t n){ size_t k = (n-1) / BLOCK + 1; size_t x = k; size_t y = 1; if(x > 65535){ x = ceil(sqrt(k)); y = (n-1)/(x*BLOCK) + 1; } dim3 d = { (unsigned int)x, (unsigned int)y, 1 }; //printf("%ld %ld %ld %ld\n", n, x, y, x*y*BLOCK); return d; } static cudaStream_t streamsArray[16]; // cudaStreamSynchronize( get_cuda_stream() ); static int streamInit[16] = { 0 }; cudaStream_t get_cuda_stream() { int i = cuda_get_device(); if (!streamInit[i]) { cudaError_t status = cudaStreamCreate(&streamsArray[i]); //cudaError_t status = cudaStreamCreateWithFlags(&streamsArray[i], cudaStreamNonBlocking); if (status != cudaSuccess) { printf(" cudaStreamCreate error: %d \n", status); const char *s = cudaGetErrorString(status); char buffer[256]; printf("CUDA Error: %s\n", s); status = cudaStreamCreateWithFlags(&streamsArray[i], cudaStreamDefault); CHECK_CUDA(status); } streamInit[i] = 1; } return streamsArray[i]; } static cudaStream_t streamsArray2[16]; // cudaStreamSynchronize( get_cuda_memcpy_stream() ); static int streamInit2[16] = { 0 }; cudaStream_t get_cuda_memcpy_stream() { int i = cuda_get_device(); if (!streamInit2[i]) { cudaError_t status = cudaStreamCreate(&streamsArray2[i]); //cudaError_t status = cudaStreamCreateWithFlags(&streamsArray2[i], cudaStreamNonBlocking); if (status != cudaSuccess) { printf(" cudaStreamCreate-Memcpy error: %d \n", status); const char *s = cudaGetErrorString(status); char buffer[256]; printf("CUDA Error: %s\n", s); status = cudaStreamCreateWithFlags(&streamsArray2[i], cudaStreamDefault); CHECK_CUDA(status); } streamInit2[i] = 1; } return streamsArray2[i]; } #ifdef CUDNN cudnnHandle_t cudnn_handle() { static int init[16] = {0}; static cudnnHandle_t handle[16]; int i = cuda_get_device(); if(!init[i]) { cudnnCreate(&handle[i]); init[i] = 1; cudnnStatus_t status = cudnnSetStream(handle[i], get_cuda_stream()); } return handle[i]; } void cudnn_check_error(cudnnStatus_t status) { #ifdef DEBUG cudaDeviceSynchronize(); #endif cudnnStatus_t status2 = CUDNN_STATUS_SUCCESS; #ifdef CUDNN_ERRQUERY_RAWCODE cudnnStatus_t status_tmp = cudnnQueryRuntimeError(cudnn_handle(), &status2, CUDNN_ERRQUERY_RAWCODE, NULL); #endif if (status != CUDNN_STATUS_SUCCESS) { const char *s = cudnnGetErrorString(status); char buffer[256]; printf("cuDNN Error: %s\n", s); snprintf(buffer, 256, "cuDNN Error: %s", s); #ifdef WIN32 getchar(); #endif error(buffer); } if (status2 != CUDNN_STATUS_SUCCESS) { const char *s = cudnnGetErrorString(status2); char buffer[256]; printf("cuDNN Error Prev: %s\n", s); snprintf(buffer, 256, "cuDNN Error Prev: %s", s); #ifdef WIN32 getchar(); #endif error(buffer); } } void cudnn_check_error_extended(cudnnStatus_t status, const char *file, int line, const char *date_time) { if (status != CUDNN_STATUS_SUCCESS) { printf("\n cuDNN status Error in: file: %s() : line: %d : build time: %s \n", file, line, date_time); cudnn_check_error(status); } #ifdef DEBUG status = cudaDeviceSynchronize(); if (status != CUDNN_STATUS_SUCCESS) printf("\n cuDNN status = cudaDeviceSynchronize() Error in: file: %s() : line: %d : build time: %s \n", file, line, date_time); #endif cudnn_check_error(status); } #endif cublasHandle_t blas_handle() { static int init[16] = {0}; static cublasHandle_t handle[16]; int i = cuda_get_device(); if(!init[i]) { cublasCreate(&handle[i]); cublasStatus_t status = cublasSetStream(handle[i], get_cuda_stream()); CHECK_CUDA((cudaError_t)status); init[i] = 1; } return handle[i]; } float *cuda_make_array(float *x, size_t n) { float *x_gpu; size_t size = sizeof(float)*n; cudaError_t status = cudaMalloc((void **)&x_gpu, size); if (status != cudaSuccess) fprintf(stderr, " Try to set subdivisions=64 in your cfg-file. \n"); CHECK_CUDA(status); if(x){ //status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice); status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream()); CHECK_CUDA(status); } if(!x_gpu) error("Cuda malloc failed\n"); return x_gpu; } void cuda_random(float *x_gpu, size_t n) { static curandGenerator_t gen[16]; static int init[16] = {0}; int i = cuda_get_device(); if(!init[i]){ curandCreateGenerator(&gen[i], CURAND_RNG_PSEUDO_DEFAULT); curandSetPseudoRandomGeneratorSeed(gen[i], time(0)); init[i] = 1; } curandGenerateUniform(gen[i], x_gpu, n); CHECK_CUDA(cudaPeekAtLastError()); } float cuda_compare(float *x_gpu, float *x, size_t n, char *s) { float* tmp = (float*)calloc(n, sizeof(float)); cuda_pull_array(x_gpu, tmp, n); //int i; //for(i = 0; i < n; ++i) printf("%f %f\n", tmp[i], x[i]); axpy_cpu(n, -1, x, 1, tmp, 1); float err = dot_cpu(n, tmp, 1, tmp, 1); printf("Error %s: %f\n", s, sqrt(err/n)); free(tmp); return err; } int *cuda_make_int_array(size_t n) { int *x_gpu; size_t size = sizeof(int)*n; cudaError_t status = cudaMalloc((void **)&x_gpu, size); if(status != cudaSuccess) fprintf(stderr, " Try to set subdivisions=64 in your cfg-file. \n"); CHECK_CUDA(status); return x_gpu; } int *cuda_make_int_array_new_api(int *x, size_t n) { int *x_gpu; size_t size = sizeof(int)*n; cudaError_t status = cudaMalloc((void **)&x_gpu, size); CHECK_CUDA(status); if (x) { //status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream()); cudaError_t status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream()); CHECK_CUDA(status); } if (!x_gpu) error("Cuda malloc failed\n"); return x_gpu; } void cuda_free(float *x_gpu) { //cudaStreamSynchronize(get_cuda_stream()); cudaError_t status = cudaFree(x_gpu); CHECK_CUDA(status); } void cuda_push_array(float *x_gpu, float *x, size_t n) { size_t size = sizeof(float)*n; //cudaError_t status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice); cudaError_t status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream()); CHECK_CUDA(status); } void cuda_pull_array(float *x_gpu, float *x, size_t n) { size_t size = sizeof(float)*n; //cudaError_t status = cudaMemcpy(x, x_gpu, size, cudaMemcpyDeviceToHost); cudaError_t status = cudaMemcpyAsync(x, x_gpu, size, cudaMemcpyDeviceToHost, get_cuda_stream()); CHECK_CUDA(status); cudaStreamSynchronize(get_cuda_stream()); } void cuda_pull_array_async(float *x_gpu, float *x, size_t n) { size_t size = sizeof(float)*n; cudaError_t status = cudaMemcpyAsync(x, x_gpu, size, cudaMemcpyDeviceToHost, get_cuda_stream()); check_error(status); //cudaStreamSynchronize(get_cuda_stream()); } int get_number_of_blocks(int array_size, int block_size) { return array_size / block_size + ((array_size % block_size > 0) ? 1 : 0); } int get_gpu_compute_capability(int i) { typedef struct cudaDeviceProp cudaDeviceProp; cudaDeviceProp prop; cudaError_t status = cudaGetDeviceProperties(&prop, i); CHECK_CUDA(status); int cc = prop.major * 100 + prop.minor * 10; // __CUDA_ARCH__ format return cc; } #else // GPU #include "darknet.h" void cuda_set_device(int n) {} #endif // GPU