#include "network.h" #include "utils.h" #include "parser.h" char *class_names[] = {"bg", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; #define AMNT 3 void draw_detection(image im, float *box, int side) { int classes = 21; int elems = 4+classes; int j; int r, c; for(r = 0; r < side; ++r){ for(c = 0; c < side; ++c){ j = (r*side + c) * elems; //printf("%d\n", j); //printf("Prob: %f\n", box[j]); int class = max_index(box+j, classes); if(box[j+class] > .02 || 1){ //int z; //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]); printf("%f %s\n", box[j+class], class_names[class]); float red = get_color(0,class,classes); float green = get_color(1,class,classes); float blue = get_color(2,class,classes); j += classes; int d = im.w/side; int y = r*d+box[j]*d; int x = c*d+box[j+1]*d; int h = box[j+2]*im.h; int w = box[j+3]*im.w; draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue); } } } //printf("Done\n"); show_image(im, "box"); cvWaitKey(0); } void train_detection(char *cfgfile, char *weightfile) { char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = 1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } //net.seen = 0; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 128; srand(time(0)); //srand(23410); int i = net.seen/imgs; list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); data train, buffer; int im_dim = 512; int jitter = 64; int classes = 20; int background = 1; pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer); clock_t time; while(1){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer); /* image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[114]); draw_detection(im, train.y.vals[114], 7); show_image(im, "truth"); cvWaitKey(0); */ printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); net.seen += imgs; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); if(i%100==0){ char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); save_weights(net, buff); } free_data(train); } } void validate_detection(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); char **paths = (char **)list_to_array(plist); int im_size = 448; int classes = 20; int background = 1; int nuisance = 0; int num_output = 7*7*(4+classes+background+nuisance); int m = plist->size; int i = 0; int splits = 100; int num = (i+1)*m/splits - i*m/splits; fprintf(stderr, "%d\n", m); data val, buffer; pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer); clock_t time; for(i = 1; i <= splits; ++i){ time=clock(); pthread_join(load_thread, 0); val = buffer; num = (i+1)*m/splits - i*m/splits; char **part = paths+(i*m/splits); if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer); fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); matrix pred = network_predict_data(net, val); int j, k, class; for(j = 0; j < pred.rows; ++j){ for(k = 0; k < pred.cols; k += classes+4+background+nuisance){ float scale = 1.; if(nuisance) scale = pred.vals[j][k]; for(class = 0; class < classes; ++class){ int index = (k)/(classes+4+background+nuisance); int r = index/7; int c = index%7; int ci = k+classes+background+nuisance; float y = (r + pred.vals[j][ci + 0])/7.; float x = (c + pred.vals[j][ci + 1])/7.; float h = pred.vals[j][ci + 2]; float w = pred.vals[j][ci + 3]; printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w); } } } time=clock(); free_data(val); } } void test_detection(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int im_size = 448; set_batch_network(&net, 1); srand(2222222); clock_t time; char filename[256]; while(1){ fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, im_size, im_size); translate_image(im, -128); scale_image(im, 1/128.); printf("%d %d %d\n", im.h, im.w, im.c); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); draw_detection(im, predictions, 7); free_image(im); } } void run_detection(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; if(0==strcmp(argv[2], "test")) test_detection(cfg, weights); else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights); }