#include "darknet.h" #include char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"}; int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; void train_coco(char *cfgfile, char *weightfile) { //char *train_images = "/home/pjreddie/data/voc/test/train.txt"; //char *train_images = "/home/pjreddie/data/coco/train.txt"; char *train_images = "data/coco.trainval.txt"; //char *train_images = "data/bags.train.list"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; layer l = net.layers[net.n - 1]; int side = l.side; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = side; args.d = &buffer; args.type = REGION_DATA; args.angle = net.angle; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); /* image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); image copy = copy_image(im); draw_coco(copy, train.y.vals[113], 7, "truth"); cvWaitKey(0); free_image(copy); */ time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0 || (i < 1000 && i%100 == 0)){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); } void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) { int i, j; for(i = 0; i < num_boxes; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; float bx = xmin; float by = ymin; float bw = xmax - xmin; float bh = ymax - ymin; for(j = 0; j < classes; ++j){ if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); } } } int get_coco_image_id(char *filename) { char *p = strrchr(filename, '_'); return atoi(p+1); } void validate_coco(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "results/"; list *plist = get_paths("data/coco_val_5k.list"); //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt"); //list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int side = l.side; int j; char buff[1024]; snprintf(buff, 1024, "%s/coco_results.json", base); FILE *fp = fopen(buff, "w"); fprintf(fp, "[\n"); box *boxes = calloc(side*side*l.n, sizeof(box)); float **probs = calloc(side*side*l.n, sizeof(float *)); for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; int t; float thresh = .01; int nms = 1; float iou_thresh = .5; int nthreads = 8; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = {0}; args.w = net.w; args.h = net.h; args.type = IMAGE_DATA; for(t = 0; t < nthreads; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for(i = nthreads; i < m+nthreads; i += nthreads){ fprintf(stderr, "%d\n", i); for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for(t = 0; t < nthreads && i+t < m; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ char *path = paths[i+t-nthreads]; int image_id = get_coco_image_id(path); float *X = val_resized[t].data; network_predict(net, X); int w = val[t].w; int h = val[t].h; get_detection_boxes(l, w, h, thresh, probs, boxes, 0); if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh); print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h); free_image(val[t]); free_image(val_resized[t]); } } fseek(fp, -2, SEEK_CUR); fprintf(fp, "\n]\n"); fclose(fp); fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); } void validate_coco_recall(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "results/comp4_det_test_"; list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int side = l.side; int j, k; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]); fps[j] = fopen(buff, "w"); } box *boxes = calloc(side*side*l.n, sizeof(box)); float **probs = calloc(side*side*l.n, sizeof(float *)); for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; float thresh = .001; int nms = 0; float iou_thresh = .5; float nms_thresh = .5; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); network_predict(net, sized.data); get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1); if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh); char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < side*side*l.n; ++k){ if(probs[k][0] > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < side*side*l.n; ++k){ float iou = box_iou(boxes[k], t); if(probs[k][0] > thresh && iou > best_iou){ best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); free(id); free_image(orig); free_image(sized); } } void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh) { image **alphabet = load_alphabet(); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } detection_layer l = net.layers[net.n-1]; set_batch_network(&net, 1); srand(2222222); float nms = .4; clock_t time; char buff[256]; char *input = buff; int j; box *boxes = calloc(l.side*l.side*l.n, sizeof(box)); float **probs = calloc(l.side*l.side*l.n, sizeof(float *)); for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); while(1){ if(filename){ strncpy(input, filename, 256); } else { printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input,0,0); image sized = resize_image(im, net.w, net.h); float *X = sized.data; time=clock(); network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0); if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80); save_image(im, "prediction"); show_image(im, "predictions"); free_image(im); free_image(sized); #ifdef OPENCV cvWaitKey(0); cvDestroyAllWindows(); #endif if (filename) break; } } void run_coco(int argc, char **argv) { char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .2); int cam_index = find_int_arg(argc, argv, "-c", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; int avg = find_int_arg(argc, argv, "-avg", 1); if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh); else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights); else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, 80, frame_skip, prefix, avg, .5, 0,0,0,0); }