#include "darknet.h" #include #include void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { int i; float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); printf("%d\n", ngpus); network *nets = calloc(ngpus, sizeof(network)); srand(time(0)); int seed = rand(); for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&nets[i], weightfile); } if(clear) *nets[i].seen = 0; nets[i].learning_rate *= ngpus; } srand(time(0)); network net = nets[0]; int imgs = net.batch * net.subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *train_list = option_find_str(options, "train", "data/train.list"); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; load_args args = {0}; args.w = net.w; args.h = net.h; args.threads = 32; args.min = net.min_crop; args.max = net.max_crop; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w; args.classes = 80; args.paths = paths; args.n = imgs; args.m = N; args.type = SEGMENTATION_DATA; data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); free_data(train); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); } void predict_segmenter(char *datafile, char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image sized = letterbox_image(im, net.w, net.h); float *X = sized.data; time=clock(); float *predictions = network_predict(net, X); image m = float_to_image(sized.w, sized.h, 81, predictions); image rgb = mask_to_rgb(m); show_image(sized, "orig"); show_image(rgb, "pred"); #ifdef OPENCV cvWaitKey(0); #endif printf("Predicted: %f\n", predictions[0]); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); free_image(im); free_image(sized); free_image(rgb); if (filename) break; } } void demo_segmenter(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) { #ifdef OPENCV printf("Regressor Demo\n"); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); CvCapture * cap; if(filename){ cap = cvCaptureFromFile(filename); }else{ cap = cvCaptureFromCAM(cam_index); } if(!cap) error("Couldn't connect to webcam.\n"); cvNamedWindow("Regressor", CV_WINDOW_NORMAL); cvResizeWindow("Regressor", 512, 512); float fps = 0; while(1){ struct timeval tval_before, tval_after, tval_result; gettimeofday(&tval_before, NULL); image in = get_image_from_stream(cap); image in_s = letterbox_image(in, net.w, net.h); show_image(in, "Regressor"); float *predictions = network_predict(net, in_s.data); printf("\033[2J"); printf("\033[1;1H"); printf("\nFPS:%.0f\n",fps); printf("People: %f\n", predictions[0]); free_image(in_s); free_image(in); cvWaitKey(10); gettimeofday(&tval_after, NULL); timersub(&tval_after, &tval_before, &tval_result); float curr = 1000000.f/((long int)tval_result.tv_usec); fps = .9*fps + .1*curr; } #endif } void run_segmenter(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int cam_index = find_int_arg(argc, argv, "-c", 0); int clear = find_arg(argc, argv, "-clear"); char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; if(0==strcmp(argv[2], "test")) predict_segmenter(data, cfg, weights, filename); else if(0==strcmp(argv[2], "train")) train_segmenter(data, cfg, weights, gpus, ngpus, clear); else if(0==strcmp(argv[2], "demo")) demo_segmenter(data, cfg, weights, cam_index, filename); }