#include "data.h" #include "utils.h" #include "image.h" #include #include #include list *get_paths(char *filename) { char *path; FILE *file = fopen(filename, "r"); if(!file) file_error(filename); list *lines = make_list(); while((path=fgetl(file))){ list_insert(lines, path); } fclose(file); return lines; } void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, float scale, int dx, int dy) { int box_height = height/num_height; int box_width = width/num_width; char *labelpath = find_replace(path, "imgs", "det"); labelpath = find_replace(labelpath, ".JPEG", ".txt"); FILE *file = fopen(labelpath, "r"); if(!file) file_error(labelpath); int x, y, h, w; while(fscanf(file, "%d %d %d %d", &x, &y, &w, &h) == 4){ x -= dx; y -= dy; int i = x/box_width; int j = y/box_height; if(i < 0) i = 0; if(i >= num_width) i = num_width-1; if(j < 0) j = 0; if(j >= num_height) j = num_height-1; float dw = (float)(x%box_width)/box_height; float dh = (float)(y%box_width)/box_width; float sh = h/scale; float sw = w/scale; //printf("%d %d %f %f\n", i, j, dh, dw); int index = (i+j*num_width)*5; truth[index++] = 1; truth[index++] = dh; truth[index++] = dw; truth[index++] = sh; truth[index++] = sw; } fclose(file); } void fill_truth(char *path, char **labels, int k, float *truth) { int i; memset(truth, 0, k*sizeof(float)); for(i = 0; i < k; ++i){ if(strstr(path, labels[i])){ truth[i] = 1; } } } matrix load_image_paths(char **paths, int n, int h, int w) { int i; matrix X; X.rows = n; X.vals = calloc(X.rows, sizeof(float*)); X.cols = 0; for(i = 0; i < n; ++i){ image im = load_image_color(paths[i], h, w); X.vals[i] = im.data; X.cols = im.h*im.w*im.c; } return X; } matrix load_labels_paths(char **paths, int n, char **labels, int k) { matrix y = make_matrix(n, k); int i; for(i = 0; i < n; ++i){ fill_truth(paths[i], labels, k, y.vals[i]); } return y; } matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width, float scale) { int k = num_height*num_width*5; matrix y = make_matrix(n, k); int i; for(i = 0; i < n; ++i){ fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, scale,0,0); } return y; } data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w) { list *plist = get_paths(filename); char **paths = (char **)list_to_array(plist); int n = plist->size; data d; d.shallow = 0; d.X = load_image_paths(paths, n, h, w); d.y = load_labels_paths(paths, n, labels, k); free_list_contents(plist); free_list(plist); free(paths); return d; } char **get_labels(char *filename) { list *plist = get_paths(filename); char **labels = (char **)list_to_array(plist); free_list(plist); return labels; } void free_data(data d) { if(!d.shallow){ free_matrix(d.X); free_matrix(d.y); }else{ free(d.X.vals); free(d.y.vals); } } data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale) { char **random_paths = calloc(n, sizeof(char*)); int i; for(i = 0; i < n; ++i){ int index = rand()%m; random_paths[i] = paths[index]; if(i == 0) printf("%s\n", paths[index]); } data d; d.shallow = 0; d.X = load_image_paths(random_paths, n, h, w); int k = nh*nw*5; d.y = make_matrix(n, k); for(i = 0; i < n; ++i){ int dx = rand()%32; int dy = rand()%32; fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy); image a = float_to_image(h, w, 3, d.X.vals[i]); jitter_image(a,224,224,dy,dx); } free(random_paths); return d; } data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale) { char **random_paths = calloc(n, sizeof(char*)); int i; for(i = 0; i < n; ++i){ int index = rand()%m; random_paths[i] = paths[index]; if(i == 0) printf("%s\n", paths[index]); } data d; d.shallow = 0; d.X = load_image_paths(random_paths, n, h, w); d.y = load_labels_detection(random_paths, n, h, w, nh, nw, scale); free(random_paths); return d; } char **get_random_paths(char **paths, int n, int m) { char **random_paths = calloc(n, sizeof(char*)); int i; for(i = 0; i < n; ++i){ int index = rand()%m; random_paths[i] = paths[index]; if(i == 0) printf("%s\n", paths[index]); } return random_paths; } data load_data(char **paths, int n, int m, char **labels, int k, int h, int w) { if(m) paths = get_random_paths(paths, n, m); data d; d.shallow = 0; d.X = load_image_paths(paths, n, h, w); d.y = load_labels_paths(paths, n, labels, k); if(m) free(paths); return d; } struct load_args{ char **paths; int n; int m; char **labels; int k; int h; int w; data *d; }; void *load_in_thread(void *ptr) { struct load_args a = *(struct load_args*)ptr; *a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w); return 0; } pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d) { pthread_t thread; struct load_args *args = calloc(1, sizeof(struct load_args)); args->n = n; args->paths = paths; args->m = m; args->labels = labels; args->k = k; args->h = h; args->w = w; args->d = d; if(pthread_create(&thread, 0, load_in_thread, args)) { error("Thread creation failed"); } return thread; } data load_categorical_data_csv(char *filename, int target, int k) { data d; d.shallow = 0; matrix X = csv_to_matrix(filename); float *truth_1d = pop_column(&X, target); float **truth = one_hot_encode(truth_1d, X.rows, k); matrix y; y.rows = X.rows; y.cols = k; y.vals = truth; d.X = X; d.y = y; free(truth_1d); return d; } data load_cifar10_data(char *filename) { data d; d.shallow = 0; long i,j; matrix X = make_matrix(10000, 3072); matrix y = make_matrix(10000, 10); d.X = X; d.y = y; FILE *fp = fopen(filename, "rb"); if(!fp) file_error(filename); for(i = 0; i < 10000; ++i){ unsigned char bytes[3073]; fread(bytes, 1, 3073, fp); int class = bytes[0]; y.vals[i][class] = 1; for(j = 0; j < X.cols; ++j){ X.vals[i][j] = (double)bytes[j+1]; } } translate_data_rows(d, -144); scale_data_rows(d, 1./128); //normalize_data_rows(d); fclose(fp); return d; } void get_random_batch(data d, int n, float *X, float *y) { int j; for(j = 0; j < n; ++j){ int index = rand()%d.X.rows; memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); } } void get_next_batch(data d, int n, int offset, float *X, float *y) { int j; for(j = 0; j < n; ++j){ int index = offset + j; memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); } } data load_all_cifar10() { data d; d.shallow = 0; int i,j,b; matrix X = make_matrix(50000, 3072); matrix y = make_matrix(50000, 10); d.X = X; d.y = y; for(b = 0; b < 5; ++b){ char buff[256]; sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1); FILE *fp = fopen(buff, "rb"); if(!fp) file_error(buff); for(i = 0; i < 10000; ++i){ unsigned char bytes[3073]; fread(bytes, 1, 3073, fp); int class = bytes[0]; y.vals[i+b*10000][class] = 1; for(j = 0; j < X.cols; ++j){ X.vals[i+b*10000][j] = (double)bytes[j+1]; } } fclose(fp); } //normalize_data_rows(d); translate_data_rows(d, -144); scale_data_rows(d, 1./128); return d; } void randomize_data(data d) { int i; for(i = d.X.rows-1; i > 0; --i){ int index = rand()%i; float *swap = d.X.vals[index]; d.X.vals[index] = d.X.vals[i]; d.X.vals[i] = swap; swap = d.y.vals[index]; d.y.vals[index] = d.y.vals[i]; d.y.vals[i] = swap; } } void scale_data_rows(data d, float s) { int i; for(i = 0; i < d.X.rows; ++i){ scale_array(d.X.vals[i], d.X.cols, s); } } void translate_data_rows(data d, float s) { int i; for(i = 0; i < d.X.rows; ++i){ translate_array(d.X.vals[i], d.X.cols, s); } } void normalize_data_rows(data d) { int i; for(i = 0; i < d.X.rows; ++i){ normalize_array(d.X.vals[i], d.X.cols); } } data *split_data(data d, int part, int total) { data *split = calloc(2, sizeof(data)); int i; int start = part*d.X.rows/total; int end = (part+1)*d.X.rows/total; data train; data test; train.shallow = test.shallow = 1; test.X.rows = test.y.rows = end-start; train.X.rows = train.y.rows = d.X.rows - (end-start); train.X.cols = test.X.cols = d.X.cols; train.y.cols = test.y.cols = d.y.cols; train.X.vals = calloc(train.X.rows, sizeof(float*)); test.X.vals = calloc(test.X.rows, sizeof(float*)); train.y.vals = calloc(train.y.rows, sizeof(float*)); test.y.vals = calloc(test.y.rows, sizeof(float*)); for(i = 0; i < start; ++i){ train.X.vals[i] = d.X.vals[i]; train.y.vals[i] = d.y.vals[i]; } for(i = start; i < end; ++i){ test.X.vals[i-start] = d.X.vals[i]; test.y.vals[i-start] = d.y.vals[i]; } for(i = end; i < d.X.rows; ++i){ train.X.vals[i-(end-start)] = d.X.vals[i]; train.y.vals[i-(end-start)] = d.y.vals[i]; } split[0] = train; split[1] = test; return split; }