#include "image.h" #include "utils.h" #include "blas.h" #include "cuda.h" #include #include #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #define STB_IMAGE_WRITE_IMPLEMENTATION #include "stb_image_write.h" int windows = 0; float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} }; float get_color(int c, int x, int max) { float ratio = ((float)x/max)*5; int i = floor(ratio); int j = ceil(ratio); ratio -= i; float r = (1-ratio) * colors[i][c] + ratio*colors[j][c]; //printf("%f\n", r); return r; } image mask_to_rgb(image mask) { int n = mask.c; image im = make_image(mask.w, mask.h, 3); int i, j; for(j = 0; j < n; ++j){ int offset = j*123457 % n; float red = get_color(2,offset,n); float green = get_color(1,offset,n); float blue = get_color(0,offset,n); for(i = 0; i < im.w*im.h; ++i){ im.data[i + 0*im.w*im.h] += mask.data[j*im.h*im.w + i]*red; im.data[i + 1*im.w*im.h] += mask.data[j*im.h*im.w + i]*green; im.data[i + 2*im.w*im.h] += mask.data[j*im.h*im.w + i]*blue; } } return im; } void composite_image(image source, image dest, int dx, int dy) { int x,y,k; for(k = 0; k < source.c; ++k){ for(y = 0; y < source.h; ++y){ for(x = 0; x < source.w; ++x){ float val = get_pixel(source, x, y, k); float val2 = get_pixel_extend(dest, dx+x, dy+y, k); set_pixel(dest, dx+x, dy+y, k, val * val2); } } } } image border_image(image a, int border) { image b = make_image(a.w + 2*border, a.h + 2*border, a.c); int x,y,k; for(k = 0; k < b.c; ++k){ for(y = 0; y < b.h; ++y){ for(x = 0; x < b.w; ++x){ float val = get_pixel_extend(a, x - border, y - border, k); if(x - border < 0 || x - border >= a.w || y - border < 0 || y - border >= a.h) val = 1; set_pixel(b, x, y, k, val); } } } return b; } image tile_images(image a, image b, int dx) { if(a.w == 0) return copy_image(b); image c = make_image(a.w + b.w + dx, (a.h > b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c); fill_cpu(c.w*c.h*c.c, 1, c.data, 1); embed_image(a, c, 0, 0); composite_image(b, c, a.w + dx, 0); return c; } image get_label(image **characters, char *string, int size) { if(size > 7) size = 7; image label = make_empty_image(0,0,0); while(*string){ image l = characters[size][(int)*string]; image n = tile_images(label, l, -size - 1 + (size+1)/2); free_image(label); label = n; ++string; } image b = border_image(label, label.h*.25); free_image(label); return b; } void draw_label(image a, int r, int c, image label, const float *rgb) { int w = label.w; int h = label.h; if (r - h >= 0) r = r - h; int i, j, k; for(j = 0; j < h && j + r < a.h; ++j){ for(i = 0; i < w && i + c < a.w; ++i){ for(k = 0; k < label.c; ++k){ float val = get_pixel(label, i, j, k); set_pixel(a, i+c, j+r, k, rgb[k] * val); } } } } void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b) { //normalize_image(a); int i; if(x1 < 0) x1 = 0; if(x1 >= a.w) x1 = a.w-1; if(x2 < 0) x2 = 0; if(x2 >= a.w) x2 = a.w-1; if(y1 < 0) y1 = 0; if(y1 >= a.h) y1 = a.h-1; if(y2 < 0) y2 = 0; if(y2 >= a.h) y2 = a.h-1; for(i = x1; i <= x2; ++i){ a.data[i + y1*a.w + 0*a.w*a.h] = r; a.data[i + y2*a.w + 0*a.w*a.h] = r; a.data[i + y1*a.w + 1*a.w*a.h] = g; a.data[i + y2*a.w + 1*a.w*a.h] = g; a.data[i + y1*a.w + 2*a.w*a.h] = b; a.data[i + y2*a.w + 2*a.w*a.h] = b; } for(i = y1; i <= y2; ++i){ a.data[x1 + i*a.w + 0*a.w*a.h] = r; a.data[x2 + i*a.w + 0*a.w*a.h] = r; a.data[x1 + i*a.w + 1*a.w*a.h] = g; a.data[x2 + i*a.w + 1*a.w*a.h] = g; a.data[x1 + i*a.w + 2*a.w*a.h] = b; a.data[x2 + i*a.w + 2*a.w*a.h] = b; } } void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b) { int i; for(i = 0; i < w; ++i){ draw_box(a, x1+i, y1+i, x2-i, y2-i, r, g, b); } } void draw_bbox(image a, box bbox, int w, float r, float g, float b) { int left = (bbox.x-bbox.w/2)*a.w; int right = (bbox.x+bbox.w/2)*a.w; int top = (bbox.y-bbox.h/2)*a.h; int bot = (bbox.y+bbox.h/2)*a.h; int i; for(i = 0; i < w; ++i){ draw_box(a, left+i, top+i, right-i, bot-i, r, g, b); } } image **load_alphabet() { int i, j; const int nsize = 8; image **alphabets = calloc(nsize, sizeof(image)); for(j = 0; j < nsize; ++j){ alphabets[j] = calloc(128, sizeof(image)); for(i = 32; i < 127; ++i){ char buff[256]; sprintf(buff, "data/labels/%d_%d.png", i, j); alphabets[j][i] = load_image_color(buff, 0, 0); } } return alphabets; } void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) { int i; for(i = 0; i < num; ++i){ int class = max_index(probs[i], classes); float prob = probs[i][class]; if(prob > thresh){ int width = im.h * .012; if(0){ width = pow(prob, 1./2.)*10+1; alphabet = 0; } //printf("%d %s: %.0f%%\n", i, names[class], prob*100); printf("%s: %.0f%%\n", names[class], prob*100); int offset = class*123457 % classes; float red = get_color(2,offset,classes); float green = get_color(1,offset,classes); float blue = get_color(0,offset,classes); float rgb[3]; //width = prob*20+2; rgb[0] = red; rgb[1] = green; rgb[2] = blue; box b = boxes[i]; int left = (b.x-b.w/2.)*im.w; int right = (b.x+b.w/2.)*im.w; int top = (b.y-b.h/2.)*im.h; int bot = (b.y+b.h/2.)*im.h; if(left < 0) left = 0; if(right > im.w-1) right = im.w-1; if(top < 0) top = 0; if(bot > im.h-1) bot = im.h-1; draw_box_width(im, left, top, right, bot, width, red, green, blue); if (alphabet) { image label = get_label(alphabet, names[class], (im.h*.03)/10); draw_label(im, top + width, left, label, rgb); free_image(label); } } } } void transpose_image(image im) { assert(im.w == im.h); int n, m; int c; for(c = 0; c < im.c; ++c){ for(n = 0; n < im.w-1; ++n){ for(m = n + 1; m < im.w; ++m){ float swap = im.data[m + im.w*(n + im.h*c)]; im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)]; im.data[n + im.w*(m + im.h*c)] = swap; } } } } void rotate_image_cw(image im, int times) { assert(im.w == im.h); times = (times + 400) % 4; int i, x, y, c; int n = im.w; for(i = 0; i < times; ++i){ for(c = 0; c < im.c; ++c){ for(x = 0; x < n/2; ++x){ for(y = 0; y < (n-1)/2 + 1; ++y){ float temp = im.data[y + im.w*(x + im.h*c)]; im.data[y + im.w*(x + im.h*c)] = im.data[n-1-x + im.w*(y + im.h*c)]; im.data[n-1-x + im.w*(y + im.h*c)] = im.data[n-1-y + im.w*(n-1-x + im.h*c)]; im.data[n-1-y + im.w*(n-1-x + im.h*c)] = im.data[x + im.w*(n-1-y + im.h*c)]; im.data[x + im.w*(n-1-y + im.h*c)] = temp; } } } } } void flip_image(image a) { int i,j,k; for(k = 0; k < a.c; ++k){ for(i = 0; i < a.h; ++i){ for(j = 0; j < a.w/2; ++j){ int index = j + a.w*(i + a.h*(k)); int flip = (a.w - j - 1) + a.w*(i + a.h*(k)); float swap = a.data[flip]; a.data[flip] = a.data[index]; a.data[index] = swap; } } } } image image_distance(image a, image b) { int i,j; image dist = make_image(a.w, a.h, 1); for(i = 0; i < a.c; ++i){ for(j = 0; j < a.h*a.w; ++j){ dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); } } for(j = 0; j < a.h*a.w; ++j){ dist.data[j] = sqrt(dist.data[j]); } return dist; } void ghost_image(image source, image dest, int dx, int dy) { int x,y,k; float max_dist = sqrt((-source.w/2. + .5)*(-source.w/2. + .5)); for(k = 0; k < source.c; ++k){ for(y = 0; y < source.h; ++y){ for(x = 0; x < source.w; ++x){ float dist = sqrt((x - source.w/2. + .5)*(x - source.w/2. + .5) + (y - source.h/2. + .5)*(y - source.h/2. + .5)); float alpha = (1 - dist/max_dist); if(alpha < 0) alpha = 0; float v1 = get_pixel(source, x,y,k); float v2 = get_pixel(dest, dx+x,dy+y,k); float val = alpha*v1 + (1-alpha)*v2; set_pixel(dest, dx+x, dy+y, k, val); } } } } void embed_image(image source, image dest, int dx, int dy) { int x,y,k; for(k = 0; k < source.c; ++k){ for(y = 0; y < source.h; ++y){ for(x = 0; x < source.w; ++x){ float val = get_pixel(source, x,y,k); set_pixel(dest, dx+x, dy+y, k, val); } } } } image collapse_image_layers(image source, int border) { int h = source.h; h = (h+border)*source.c - border; image dest = make_image(source.w, h, 1); int i; for(i = 0; i < source.c; ++i){ image layer = get_image_layer(source, i); int h_offset = i*(source.h+border); embed_image(layer, dest, 0, h_offset); free_image(layer); } return dest; } void constrain_image(image im) { int i; for(i = 0; i < im.w*im.h*im.c; ++i){ if(im.data[i] < 0) im.data[i] = 0; if(im.data[i] > 1) im.data[i] = 1; } } void normalize_image(image p) { int i; float min = 9999999; float max = -999999; for(i = 0; i < p.h*p.w*p.c; ++i){ float v = p.data[i]; if(v < min) min = v; if(v > max) max = v; } if(max - min < .000000001){ min = 0; max = 1; } for(i = 0; i < p.c*p.w*p.h; ++i){ p.data[i] = (p.data[i] - min)/(max-min); } } void normalize_image2(image p) { float *min = calloc(p.c, sizeof(float)); float *max = calloc(p.c, sizeof(float)); int i,j; for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; for(j = 0; j < p.c; ++j){ for(i = 0; i < p.h*p.w; ++i){ float v = p.data[i+j*p.h*p.w]; if(v < min[j]) min[j] = v; if(v > max[j]) max[j] = v; } } for(i = 0; i < p.c; ++i){ if(max[i] - min[i] < .000000001){ min[i] = 0; max[i] = 1; } } for(j = 0; j < p.c; ++j){ for(i = 0; i < p.w*p.h; ++i){ p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]); } } free(min); free(max); } void copy_image_into(image src, image dest) { memcpy(dest.data, src.data, src.h*src.w*src.c*sizeof(float)); } image copy_image(image p) { image copy = p; copy.data = calloc(p.h*p.w*p.c, sizeof(float)); memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float)); return copy; } void rgbgr_image(image im) { int i; for(i = 0; i < im.w*im.h; ++i){ float swap = im.data[i]; im.data[i] = im.data[i+im.w*im.h*2]; im.data[i+im.w*im.h*2] = swap; } } #ifdef OPENCV void show_image_cv(image p, const char *name, IplImage *disp) { int x,y,k; if(p.c == 3) rgbgr_image(p); //normalize_image(copy); char buff[256]; //sprintf(buff, "%s (%d)", name, windows); sprintf(buff, "%s", name); int step = disp->widthStep; cvNamedWindow(buff, CV_WINDOW_NORMAL); //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); ++windows; for(y = 0; y < p.h; ++y){ for(x = 0; x < p.w; ++x){ for(k= 0; k < p.c; ++k){ disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(p,x,y,k)*255); } } } if(0){ int w = 448; int h = w*p.h/p.w; if(h > 1000){ h = 1000; w = h*p.w/p.h; } IplImage *buffer = disp; disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels); cvResize(buffer, disp, CV_INTER_LINEAR); cvReleaseImage(&buffer); } cvShowImage(buff, disp); } #endif void show_image(image p, const char *name) { #ifdef OPENCV IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); image copy = copy_image(p); constrain_image(copy); show_image_cv(copy, name, disp); free_image(copy); cvReleaseImage(&disp); #else fprintf(stderr, "Not compiled with OpenCV, saving to %s.png instead\n", name); save_image(p, name); #endif } #ifdef OPENCV void ipl_into_image(IplImage* src, image im) { unsigned char *data = (unsigned char *)src->imageData; int h = src->height; int w = src->width; int c = src->nChannels; int step = src->widthStep; int i, j, k; for(i = 0; i < h; ++i){ for(k= 0; k < c; ++k){ for(j = 0; j < w; ++j){ im.data[k*w*h + i*w + j] = data[i*step + j*c + k]/255.; } } } } image ipl_to_image(IplImage* src) { int h = src->height; int w = src->width; int c = src->nChannels; image out = make_image(w, h, c); ipl_into_image(src, out); return out; } image load_image_cv(char *filename, int channels) { IplImage* src = 0; int flag = -1; if (channels == 0) flag = -1; else if (channels == 1) flag = 0; else if (channels == 3) flag = 1; else { fprintf(stderr, "OpenCV can't force load with %d channels\n", channels); } if( (src = cvLoadImage(filename, flag)) == 0 ) { fprintf(stderr, "Cannot load image \"%s\"\n", filename); char buff[256]; sprintf(buff, "echo %s >> bad.list", filename); system(buff); return make_image(10,10,3); //exit(0); } image out = ipl_to_image(src); cvReleaseImage(&src); rgbgr_image(out); return out; } void flush_stream_buffer(CvCapture *cap, int n) { int i; for(i = 0; i < n; ++i) { cvQueryFrame(cap); } } image get_image_from_stream(CvCapture *cap) { IplImage* src = cvQueryFrame(cap); if (!src) return make_empty_image(0,0,0); image im = ipl_to_image(src); rgbgr_image(im); return im; } int fill_image_from_stream(CvCapture *cap, image im) { IplImage* src = cvQueryFrame(cap); if (!src) return 0; ipl_into_image(src, im); rgbgr_image(im); return 1; } void save_image_jpg(image p, const char *name) { image copy = copy_image(p); if(p.c == 3) rgbgr_image(copy); int x,y,k; char buff[256]; sprintf(buff, "%s.jpg", name); IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); int step = disp->widthStep; for(y = 0; y < p.h; ++y){ for(x = 0; x < p.w; ++x){ for(k= 0; k < p.c; ++k){ disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); } } } cvSaveImage(buff, disp,0); cvReleaseImage(&disp); free_image(copy); } #endif void save_image_png(image im, const char *name) { char buff[256]; //sprintf(buff, "%s (%d)", name, windows); sprintf(buff, "%s.png", name); unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char)); int i,k; for(k = 0; k < im.c; ++k){ for(i = 0; i < im.w*im.h; ++i){ data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]); } } int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c); free(data); if(!success) fprintf(stderr, "Failed to write image %s\n", buff); } void save_image(image im, const char *name) { #ifdef OPENCV save_image_jpg(im, name); #else save_image_png(im, name); #endif } void show_image_layers(image p, char *name) { int i; char buff[256]; for(i = 0; i < p.c; ++i){ sprintf(buff, "%s - Layer %d", name, i); image layer = get_image_layer(p, i); show_image(layer, buff); free_image(layer); } } void show_image_collapsed(image p, char *name) { image c = collapse_image_layers(p, 1); show_image(c, name); free_image(c); } image make_empty_image(int w, int h, int c) { image out; out.data = 0; out.h = h; out.w = w; out.c = c; return out; } image make_image(int w, int h, int c) { image out = make_empty_image(w,h,c); out.data = calloc(h*w*c, sizeof(float)); return out; } image make_random_image(int w, int h, int c) { image out = make_empty_image(w,h,c); out.data = calloc(h*w*c, sizeof(float)); int i; for(i = 0; i < w*h*c; ++i){ out.data[i] = (rand_normal() * .25) + .5; } return out; } image float_to_image(int w, int h, int c, float *data) { image out = make_empty_image(w,h,c); out.data = data; return out; } void place_image(image im, int w, int h, int dx, int dy, image canvas) { int x, y, c; for(c = 0; c < im.c; ++c){ for(y = 0; y < h; ++y){ for(x = 0; x < w; ++x){ int rx = ((float)x / w) * im.w; int ry = ((float)y / h) * im.h; float val = bilinear_interpolate(im, rx, ry, c); set_pixel(canvas, x + dx, y + dy, c, val); } } } } image center_crop_image(image im, int w, int h) { int m = (im.w < im.h) ? im.w : im.h; image c = crop_image(im, (im.w - m) / 2, (im.h - m)/2, m, m); image r = resize_image(c, w, h); free_image(c); return r; } image rotate_crop_image(image im, float rad, float s, int w, int h, float dx, float dy, float aspect) { int x, y, c; float cx = im.w/2.; float cy = im.h/2.; image rot = make_image(w, h, im.c); for(c = 0; c < im.c; ++c){ for(y = 0; y < h; ++y){ for(x = 0; x < w; ++x){ float rx = cos(rad)*((x - w/2.)/s*aspect + dx/s*aspect) - sin(rad)*((y - h/2.)/s + dy/s) + cx; float ry = sin(rad)*((x - w/2.)/s*aspect + dx/s*aspect) + cos(rad)*((y - h/2.)/s + dy/s) + cy; float val = bilinear_interpolate(im, rx, ry, c); set_pixel(rot, x, y, c, val); } } } return rot; } image rotate_image(image im, float rad) { int x, y, c; float cx = im.w/2.; float cy = im.h/2.; image rot = make_image(im.w, im.h, im.c); for(c = 0; c < im.c; ++c){ for(y = 0; y < im.h; ++y){ for(x = 0; x < im.w; ++x){ float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx; float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy; float val = bilinear_interpolate(im, rx, ry, c); set_pixel(rot, x, y, c, val); } } } return rot; } void fill_image(image m, float s) { int i; for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] = s; } void translate_image(image m, float s) { int i; for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; } void scale_image(image m, float s) { int i; for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; } image crop_image(image im, int dx, int dy, int w, int h) { image cropped = make_image(w, h, im.c); int i, j, k; for(k = 0; k < im.c; ++k){ for(j = 0; j < h; ++j){ for(i = 0; i < w; ++i){ int r = j + dy; int c = i + dx; float val = 0; r = constrain_int(r, 0, im.h-1); c = constrain_int(c, 0, im.w-1); val = get_pixel(im, c, r, k); set_pixel(cropped, i, j, k, val); } } } return cropped; } int best_3d_shift_r(image a, image b, int min, int max) { if(min == max) return min; int mid = floor((min + max) / 2.); image c1 = crop_image(b, 0, mid, b.w, b.h); image c2 = crop_image(b, 0, mid+1, b.w, b.h); float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10); float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10); free_image(c1); free_image(c2); if(d1 < d2) return best_3d_shift_r(a, b, min, mid); else return best_3d_shift_r(a, b, mid+1, max); } int best_3d_shift(image a, image b, int min, int max) { int i; int best = 0; float best_distance = FLT_MAX; for(i = min; i <= max; i += 2){ image c = crop_image(b, 0, i, b.w, b.h); float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100); if(d < best_distance){ best_distance = d; best = i; } printf("%d %f\n", i, d); free_image(c); } return best; } void composite_3d(char *f1, char *f2, char *out, int delta) { if(!out) out = "out"; image a = load_image(f1, 0,0,0); image b = load_image(f2, 0,0,0); int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100); image c1 = crop_image(b, 10, shift, b.w, b.h); float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100); image c2 = crop_image(b, -10, shift, b.w, b.h); float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100); if(d2 < d1 && 0){ image swap = a; a = b; b = swap; shift = -shift; printf("swapped, %d\n", shift); } else{ printf("%d\n", shift); } image c = crop_image(b, delta, shift, a.w, a.h); int i; for(i = 0; i < c.w*c.h; ++i){ c.data[i] = a.data[i]; } #ifdef OPENCV save_image_jpg(c, out); #else save_image(c, out); #endif } void letterbox_image_into(image im, int w, int h, image boxed) { int new_w = im.w; int new_h = im.h; if (((float)w/im.w) < ((float)h/im.h)) { new_w = w; new_h = (im.h * w)/im.w; } else { new_h = h; new_w = (im.w * h)/im.h; } image resized = resize_image(im, new_w, new_h); embed_image(resized, boxed, (w-new_w)/2, (h-new_h)/2); free_image(resized); } image letterbox_image(image im, int w, int h) { int new_w = im.w; int new_h = im.h; if (((float)w/im.w) < ((float)h/im.h)) { new_w = w; new_h = (im.h * w)/im.w; } else { new_h = h; new_w = (im.w * h)/im.h; } image resized = resize_image(im, new_w, new_h); image boxed = make_image(w, h, im.c); fill_image(boxed, .5); //int i; //for(i = 0; i < boxed.w*boxed.h*boxed.c; ++i) boxed.data[i] = 0; embed_image(resized, boxed, (w-new_w)/2, (h-new_h)/2); free_image(resized); return boxed; } image resize_max(image im, int max) { int w = im.w; int h = im.h; if(w > h){ h = (h * max) / w; w = max; } else { w = (w * max) / h; h = max; } if(w == im.w && h == im.h) return im; image resized = resize_image(im, w, h); return resized; } image resize_min(image im, int min) { int w = im.w; int h = im.h; if(w < h){ h = (h * min) / w; w = min; } else { w = (w * min) / h; h = min; } if(w == im.w && h == im.h) return im; image resized = resize_image(im, w, h); return resized; } image random_crop_image(image im, int w, int h) { int dx = rand_int(0, im.w - w); int dy = rand_int(0, im.h - h); image crop = crop_image(im, dx, dy, w, h); return crop; } augment_args random_augment_args(image im, float angle, float aspect, int low, int high, int w, int h) { augment_args a = {0}; aspect = rand_scale(aspect); int r = rand_int(low, high); int min = (im.h < im.w*aspect) ? im.h : im.w*aspect; float scale = (float)r / min; float rad = rand_uniform(-angle, angle) * TWO_PI / 360.; float dx = (im.w*scale/aspect - w) / 2.; float dy = (im.h*scale - w) / 2.; if(dx < 0) dx = 0; if(dy < 0) dy = 0; dx = rand_uniform(-dx, dx); dy = rand_uniform(-dy, dy); a.rad = rad; a.scale = scale; a.w = w; a.h = h; a.dx = dx; a.dy = dy; a.aspect = aspect; return a; } image random_augment_image(image im, float angle, float aspect, int low, int high, int w, int h) { augment_args a = random_augment_args(im, angle, aspect, low, high, w, h); image crop = rotate_crop_image(im, a.rad, a.scale, a.w, a.h, a.dx, a.dy, a.aspect); return crop; } float three_way_max(float a, float b, float c) { return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ; } float three_way_min(float a, float b, float c) { return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ; } void yuv_to_rgb(image im) { assert(im.c == 3); int i, j; float r, g, b; float y, u, v; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ y = get_pixel(im, i , j, 0); u = get_pixel(im, i , j, 1); v = get_pixel(im, i , j, 2); r = y + 1.13983*v; g = y + -.39465*u + -.58060*v; b = y + 2.03211*u; set_pixel(im, i, j, 0, r); set_pixel(im, i, j, 1, g); set_pixel(im, i, j, 2, b); } } } void rgb_to_yuv(image im) { assert(im.c == 3); int i, j; float r, g, b; float y, u, v; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ r = get_pixel(im, i , j, 0); g = get_pixel(im, i , j, 1); b = get_pixel(im, i , j, 2); y = .299*r + .587*g + .114*b; u = -.14713*r + -.28886*g + .436*b; v = .615*r + -.51499*g + -.10001*b; set_pixel(im, i, j, 0, y); set_pixel(im, i, j, 1, u); set_pixel(im, i, j, 2, v); } } } // http://www.cs.rit.edu/~ncs/color/t_convert.html void rgb_to_hsv(image im) { assert(im.c == 3); int i, j; float r, g, b; float h, s, v; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ r = get_pixel(im, i , j, 0); g = get_pixel(im, i , j, 1); b = get_pixel(im, i , j, 2); float max = three_way_max(r,g,b); float min = three_way_min(r,g,b); float delta = max - min; v = max; if(max == 0){ s = 0; h = 0; }else{ s = delta/max; if(r == max){ h = (g - b) / delta; } else if (g == max) { h = 2 + (b - r) / delta; } else { h = 4 + (r - g) / delta; } if (h < 0) h += 6; h = h/6.; } set_pixel(im, i, j, 0, h); set_pixel(im, i, j, 1, s); set_pixel(im, i, j, 2, v); } } } void hsv_to_rgb(image im) { assert(im.c == 3); int i, j; float r, g, b; float h, s, v; float f, p, q, t; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ h = 6 * get_pixel(im, i , j, 0); s = get_pixel(im, i , j, 1); v = get_pixel(im, i , j, 2); if (s == 0) { r = g = b = v; } else { int index = floor(h); f = h - index; p = v*(1-s); q = v*(1-s*f); t = v*(1-s*(1-f)); if(index == 0){ r = v; g = t; b = p; } else if(index == 1){ r = q; g = v; b = p; } else if(index == 2){ r = p; g = v; b = t; } else if(index == 3){ r = p; g = q; b = v; } else if(index == 4){ r = t; g = p; b = v; } else { r = v; g = p; b = q; } } set_pixel(im, i, j, 0, r); set_pixel(im, i, j, 1, g); set_pixel(im, i, j, 2, b); } } } void grayscale_image_3c(image im) { assert(im.c == 3); int i, j, k; float scale[] = {0.299, 0.587, 0.114}; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ float val = 0; for(k = 0; k < 3; ++k){ val += scale[k]*get_pixel(im, i, j, k); } im.data[0*im.h*im.w + im.w*j + i] = val; im.data[1*im.h*im.w + im.w*j + i] = val; im.data[2*im.h*im.w + im.w*j + i] = val; } } } image grayscale_image(image im) { assert(im.c == 3); int i, j, k; image gray = make_image(im.w, im.h, 1); float scale[] = {0.299, 0.587, 0.114}; for(k = 0; k < im.c; ++k){ for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k); } } } return gray; } image threshold_image(image im, float thresh) { int i; image t = make_image(im.w, im.h, im.c); for(i = 0; i < im.w*im.h*im.c; ++i){ t.data[i] = im.data[i]>thresh ? 1 : 0; } return t; } image blend_image(image fore, image back, float alpha) { assert(fore.w == back.w && fore.h == back.h && fore.c == back.c); image blend = make_image(fore.w, fore.h, fore.c); int i, j, k; for(k = 0; k < fore.c; ++k){ for(j = 0; j < fore.h; ++j){ for(i = 0; i < fore.w; ++i){ float val = alpha * get_pixel(fore, i, j, k) + (1 - alpha)* get_pixel(back, i, j, k); set_pixel(blend, i, j, k, val); } } } return blend; } void scale_image_channel(image im, int c, float v) { int i, j; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ float pix = get_pixel(im, i, j, c); pix = pix*v; set_pixel(im, i, j, c, pix); } } } void translate_image_channel(image im, int c, float v) { int i, j; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ float pix = get_pixel(im, i, j, c); pix = pix+v; set_pixel(im, i, j, c, pix); } } } image binarize_image(image im) { image c = copy_image(im); int i; for(i = 0; i < im.w * im.h * im.c; ++i){ if(c.data[i] > .5) c.data[i] = 1; else c.data[i] = 0; } return c; } void saturate_image(image im, float sat) { rgb_to_hsv(im); scale_image_channel(im, 1, sat); hsv_to_rgb(im); constrain_image(im); } void hue_image(image im, float hue) { rgb_to_hsv(im); int i; for(i = 0; i < im.w*im.h; ++i){ im.data[i] = im.data[i] + hue; if (im.data[i] > 1) im.data[i] -= 1; if (im.data[i] < 0) im.data[i] += 1; } hsv_to_rgb(im); constrain_image(im); } void exposure_image(image im, float sat) { rgb_to_hsv(im); scale_image_channel(im, 2, sat); hsv_to_rgb(im); constrain_image(im); } void distort_image(image im, float hue, float sat, float val) { rgb_to_hsv(im); scale_image_channel(im, 1, sat); scale_image_channel(im, 2, val); int i; for(i = 0; i < im.w*im.h; ++i){ im.data[i] = im.data[i] + hue; if (im.data[i] > 1) im.data[i] -= 1; if (im.data[i] < 0) im.data[i] += 1; } hsv_to_rgb(im); constrain_image(im); } void random_distort_image(image im, float hue, float saturation, float exposure) { float dhue = rand_uniform(-hue, hue); float dsat = rand_scale(saturation); float dexp = rand_scale(exposure); distort_image(im, dhue, dsat, dexp); } void saturate_exposure_image(image im, float sat, float exposure) { rgb_to_hsv(im); scale_image_channel(im, 1, sat); scale_image_channel(im, 2, exposure); hsv_to_rgb(im); constrain_image(im); } float bilinear_interpolate(image im, float x, float y, int c) { int ix = (int) floorf(x); int iy = (int) floorf(y); float dx = x - ix; float dy = y - iy; float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + dy * dx * get_pixel_extend(im, ix+1, iy+1, c); return val; } image resize_image(image im, int w, int h) { image resized = make_image(w, h, im.c); image part = make_image(w, im.h, im.c); int r, c, k; float w_scale = (float)(im.w - 1) / (w - 1); float h_scale = (float)(im.h - 1) / (h - 1); for(k = 0; k < im.c; ++k){ for(r = 0; r < im.h; ++r){ for(c = 0; c < w; ++c){ float val = 0; if(c == w-1 || im.w == 1){ val = get_pixel(im, im.w-1, r, k); } else { float sx = c*w_scale; int ix = (int) sx; float dx = sx - ix; val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k); } set_pixel(part, c, r, k, val); } } } for(k = 0; k < im.c; ++k){ for(r = 0; r < h; ++r){ float sy = r*h_scale; int iy = (int) sy; float dy = sy - iy; for(c = 0; c < w; ++c){ float val = (1-dy) * get_pixel(part, c, iy, k); set_pixel(resized, c, r, k, val); } if(r == h-1 || im.h == 1) continue; for(c = 0; c < w; ++c){ float val = dy * get_pixel(part, c, iy+1, k); add_pixel(resized, c, r, k, val); } } } free_image(part); return resized; } void test_resize(char *filename) { image im = load_image(filename, 0,0, 3); float mag = mag_array(im.data, im.w*im.h*im.c); printf("L2 Norm: %f\n", mag); image gray = grayscale_image(im); image c1 = copy_image(im); image c2 = copy_image(im); image c3 = copy_image(im); image c4 = copy_image(im); distort_image(c1, .1, 1.5, 1.5); distort_image(c2, -.1, .66666, .66666); distort_image(c3, .1, 1.5, .66666); distort_image(c4, .1, .66666, 1.5); show_image(im, "Original"); show_image(gray, "Gray"); show_image(c1, "C1"); show_image(c2, "C2"); show_image(c3, "C3"); show_image(c4, "C4"); #ifdef OPENCV while(1){ image aug = random_augment_image(im, 0, .75, 320, 448, 320, 320); show_image(aug, "aug"); free_image(aug); float exposure = 1.15; float saturation = 1.15; float hue = .05; image c = copy_image(im); float dexp = rand_scale(exposure); float dsat = rand_scale(saturation); float dhue = rand_uniform(-hue, hue); distort_image(c, dhue, dsat, dexp); show_image(c, "rand"); printf("%f %f %f\n", dhue, dsat, dexp); free_image(c); cvWaitKey(0); } #endif } image load_image_stb(char *filename, int channels) { int w, h, c; unsigned char *data = stbi_load(filename, &w, &h, &c, channels); if (!data) { fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason()); exit(0); } if(channels) c = channels; int i,j,k; image im = make_image(w, h, c); for(k = 0; k < c; ++k){ for(j = 0; j < h; ++j){ for(i = 0; i < w; ++i){ int dst_index = i + w*j + w*h*k; int src_index = k + c*i + c*w*j; im.data[dst_index] = (float)data[src_index]/255.; } } } free(data); return im; } image load_image(char *filename, int w, int h, int c) { #ifdef OPENCV image out = load_image_cv(filename, c); #else image out = load_image_stb(filename, c); #endif if((h && w) && (h != out.h || w != out.w)){ image resized = resize_image(out, w, h); free_image(out); out = resized; } return out; } image load_image_color(char *filename, int w, int h) { return load_image(filename, w, h, 3); } image get_image_layer(image m, int l) { image out = make_image(m.w, m.h, 1); int i; for(i = 0; i < m.h*m.w; ++i){ out.data[i] = m.data[i+l*m.h*m.w]; } return out; } float get_pixel(image m, int x, int y, int c) { assert(x < m.w && y < m.h && c < m.c); return m.data[c*m.h*m.w + y*m.w + x]; } float get_pixel_extend(image m, int x, int y, int c) { if(x < 0) x = 0; if(x >= m.w) x = m.w-1; if(y < 0) y = 0; if(y >= m.h) y = m.h-1; if(c < 0 || c >= m.c) return 0; return get_pixel(m, x, y, c); } void set_pixel(image m, int x, int y, int c, float val) { if (x < 0 || y < 0 || c < 0 || x >= m.w || y >= m.h || c >= m.c) return; assert(x < m.w && y < m.h && c < m.c); m.data[c*m.h*m.w + y*m.w + x] = val; } void add_pixel(image m, int x, int y, int c, float val) { assert(x < m.w && y < m.h && c < m.c); m.data[c*m.h*m.w + y*m.w + x] += val; } void print_image(image m) { int i, j, k; for(i =0 ; i < m.c; ++i){ for(j =0 ; j < m.h; ++j){ for(k = 0; k < m.w; ++k){ printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]); if(k > 30) break; } printf("\n"); if(j > 30) break; } printf("\n"); } printf("\n"); } image collapse_images_vert(image *ims, int n) { int color = 1; int border = 1; int h,w,c; w = ims[0].w; h = (ims[0].h + border) * n - border; c = ims[0].c; if(c != 3 || !color){ w = (w+border)*c - border; c = 1; } image filters = make_image(w, h, c); int i,j; for(i = 0; i < n; ++i){ int h_offset = i*(ims[0].h+border); image copy = copy_image(ims[i]); //normalize_image(copy); if(c == 3 && color){ embed_image(copy, filters, 0, h_offset); } else{ for(j = 0; j < copy.c; ++j){ int w_offset = j*(ims[0].w+border); image layer = get_image_layer(copy, j); embed_image(layer, filters, w_offset, h_offset); free_image(layer); } } free_image(copy); } return filters; } image collapse_images_horz(image *ims, int n) { int color = 1; int border = 1; int h,w,c; int size = ims[0].h; h = size; w = (ims[0].w + border) * n - border; c = ims[0].c; if(c != 3 || !color){ h = (h+border)*c - border; c = 1; } image filters = make_image(w, h, c); int i,j; for(i = 0; i < n; ++i){ int w_offset = i*(size+border); image copy = copy_image(ims[i]); //normalize_image(copy); if(c == 3 && color){ embed_image(copy, filters, w_offset, 0); } else{ for(j = 0; j < copy.c; ++j){ int h_offset = j*(size+border); image layer = get_image_layer(copy, j); embed_image(layer, filters, w_offset, h_offset); free_image(layer); } } free_image(copy); } return filters; } void show_image_normalized(image im, const char *name) { image c = copy_image(im); normalize_image(c); show_image(c, name); free_image(c); } void show_images(image *ims, int n, char *window) { image m = collapse_images_vert(ims, n); /* int w = 448; int h = ((float)m.h/m.w) * 448; if(h > 896){ h = 896; w = ((float)m.w/m.h) * 896; } image sized = resize_image(m, w, h); */ normalize_image(m); save_image(m, window); show_image(m, window); free_image(m); } void free_image(image m) { if(m.data){ free(m.data); } }