#include #include #include "network.h" #include "image.h" #include "data.h" #include "utils.h" #include "params.h" #include "crop_layer.h" #include "connected_layer.h" #include "convolutional_layer.h" #include "deconvolutional_layer.h" #include "detection_layer.h" #include "maxpool_layer.h" #include "cost_layer.h" #include "normalization_layer.h" #include "softmax_layer.h" #include "dropout_layer.h" char *get_layer_string(LAYER_TYPE a) { switch(a){ case CONVOLUTIONAL: return "convolutional"; case DECONVOLUTIONAL: return "deconvolutional"; case CONNECTED: return "connected"; case MAXPOOL: return "maxpool"; case SOFTMAX: return "softmax"; case DETECTION: return "detection"; case NORMALIZATION: return "normalization"; case DROPOUT: return "dropout"; case CROP: return "crop"; case COST: return "cost"; default: break; } return "none"; } network make_network(int n) { network net; net.n = n; net.layers = calloc(net.n, sizeof(void *)); net.types = calloc(net.n, sizeof(LAYER_TYPE)); net.outputs = 0; net.output = 0; net.seen = 0; net.batch = 0; net.inputs = 0; net.h = net.w = net.c = 0; #ifdef GPU net.input_gpu = calloc(1, sizeof(float *)); net.truth_gpu = calloc(1, sizeof(float *)); #endif return net; } void forward_network(network net, network_state state) { int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state); } else if(net.types[i] == DECONVOLUTIONAL){ forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state); } else if(net.types[i] == DETECTION){ forward_detection_layer(*(detection_layer *)net.layers[i], state); } else if(net.types[i] == CONNECTED){ forward_connected_layer(*(connected_layer *)net.layers[i], state); } else if(net.types[i] == CROP){ forward_crop_layer(*(crop_layer *)net.layers[i], state); } else if(net.types[i] == COST){ forward_cost_layer(*(cost_layer *)net.layers[i], state); } else if(net.types[i] == SOFTMAX){ forward_softmax_layer(*(softmax_layer *)net.layers[i], state); } else if(net.types[i] == MAXPOOL){ forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state); } else if(net.types[i] == NORMALIZATION){ forward_normalization_layer(*(normalization_layer *)net.layers[i], state); } else if(net.types[i] == DROPOUT){ forward_dropout_layer(*(dropout_layer *)net.layers[i], state); } state.input = get_network_output_layer(net, i); } } void update_network(network net) { int i; int update_batch = net.batch*net.subdivisions; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay); } else if(net.types[i] == DECONVOLUTIONAL){ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay); } } } float *get_network_output_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ return ((convolutional_layer *)net.layers[i]) -> output; } else if(net.types[i] == DECONVOLUTIONAL){ return ((deconvolutional_layer *)net.layers[i]) -> output; } else if(net.types[i] == MAXPOOL){ return ((maxpool_layer *)net.layers[i]) -> output; } else if(net.types[i] == DETECTION){ return ((detection_layer *)net.layers[i]) -> output; } else if(net.types[i] == SOFTMAX){ return ((softmax_layer *)net.layers[i]) -> output; } else if(net.types[i] == DROPOUT){ return get_network_output_layer(net, i-1); } else if(net.types[i] == CONNECTED){ return ((connected_layer *)net.layers[i]) -> output; } else if(net.types[i] == CROP){ return ((crop_layer *)net.layers[i]) -> output; } else if(net.types[i] == NORMALIZATION){ return ((normalization_layer *)net.layers[i]) -> output; } return 0; } float *get_network_output(network net) { int i; for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; return get_network_output_layer(net, i); } float *get_network_delta_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == DECONVOLUTIONAL){ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == DETECTION){ detection_layer layer = *(detection_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == DROPOUT){ if(i == 0) return 0; return get_network_delta_layer(net, i-1); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.delta; } return 0; } float get_network_cost(network net) { if(net.types[net.n-1] == COST){ return ((cost_layer *)net.layers[net.n-1])->output[0]; } return 0; } float *get_network_delta(network net) { return get_network_delta_layer(net, net.n-1); } int get_predicted_class_network(network net) { float *out = get_network_output(net); int k = get_network_output_size(net); return max_index(out, k); } void backward_network(network net, network_state state) { int i; float *original_input = state.input; for(i = net.n-1; i >= 0; --i){ if(i == 0){ state.input = original_input; state.delta = 0; }else{ state.input = get_network_output_layer(net, i-1); state.delta = get_network_delta_layer(net, i-1); } if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; backward_convolutional_layer(layer, state); } else if(net.types[i] == DECONVOLUTIONAL){ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; backward_deconvolutional_layer(layer, state); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; if(i != 0) backward_maxpool_layer(layer, state); } else if(net.types[i] == DROPOUT){ dropout_layer layer = *(dropout_layer *)net.layers[i]; backward_dropout_layer(layer, state); } else if(net.types[i] == DETECTION){ detection_layer layer = *(detection_layer *)net.layers[i]; backward_detection_layer(layer, state); } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; if(i != 0) backward_normalization_layer(layer, state); } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; if(i != 0) backward_softmax_layer(layer, state); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; backward_connected_layer(layer, state); } else if(net.types[i] == COST){ cost_layer layer = *(cost_layer *)net.layers[i]; backward_cost_layer(layer, state); } } } float train_network_datum(network net, float *x, float *y) { #ifdef GPU if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); #endif network_state state; state.input = x; state.truth = y; state.train = 1; forward_network(net, state); backward_network(net, state); float error = get_network_cost(net); if((net.seen/net.batch)%net.subdivisions == 0) update_network(net); return error; } float train_network_sgd(network net, data d, int n) { int batch = net.batch; float *X = calloc(batch*d.X.cols, sizeof(float)); float *y = calloc(batch*d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ net.seen += batch; get_random_batch(d, batch, X, y); float err = train_network_datum(net, X, y); sum += err; } free(X); free(y); return (float)sum/(n*batch); } float train_network(network net, data d) { int batch = net.batch; int n = d.X.rows / batch; float *X = calloc(batch*d.X.cols, sizeof(float)); float *y = calloc(batch*d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ get_next_batch(d, batch, i*batch, X, y); net.seen += batch; float err = train_network_datum(net, X, y); sum += err; } free(X); free(y); return (float)sum/(n*batch); } float train_network_batch(network net, data d, int n) { int i,j; network_state state; state.train = 1; float sum = 0; int batch = 2; for(i = 0; i < n; ++i){ for(j = 0; j < batch; ++j){ int index = rand()%d.X.rows; state.input = d.X.vals[index]; state.truth = d.y.vals[index]; forward_network(net, state); backward_network(net, state); sum += get_network_cost(net); } update_network(net); } return (float)sum/(n*batch); } void set_batch_network(network *net, int b) { net->batch = b; int i; for(i = 0; i < net->n; ++i){ if(net->types[i] == CONVOLUTIONAL){ convolutional_layer *layer = (convolutional_layer *)net->layers[i]; layer->batch = b; }else if(net->types[i] == DECONVOLUTIONAL){ deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i]; layer->batch = b; } else if(net->types[i] == MAXPOOL){ maxpool_layer *layer = (maxpool_layer *)net->layers[i]; layer->batch = b; } else if(net->types[i] == CONNECTED){ connected_layer *layer = (connected_layer *)net->layers[i]; layer->batch = b; } else if(net->types[i] == DROPOUT){ dropout_layer *layer = (dropout_layer *) net->layers[i]; layer->batch = b; } else if(net->types[i] == DETECTION){ detection_layer *layer = (detection_layer *) net->layers[i]; layer->batch = b; } else if(net->types[i] == SOFTMAX){ softmax_layer *layer = (softmax_layer *)net->layers[i]; layer->batch = b; } else if(net->types[i] == COST){ cost_layer *layer = (cost_layer *)net->layers[i]; layer->batch = b; } else if(net->types[i] == CROP){ crop_layer *layer = (crop_layer *)net->layers[i]; layer->batch = b; } } } int get_network_input_size_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.h*layer.w*layer.c; } if(net.types[i] == DECONVOLUTIONAL){ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; return layer.h*layer.w*layer.c; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.h*layer.w*layer.c; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.inputs; } else if(net.types[i] == DROPOUT){ dropout_layer layer = *(dropout_layer *) net.layers[i]; return layer.inputs; } else if(net.types[i] == DETECTION){ detection_layer layer = *(detection_layer *) net.layers[i]; return layer.inputs; } else if(net.types[i] == CROP){ crop_layer layer = *(crop_layer *) net.layers[i]; return layer.c*layer.h*layer.w; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.inputs; } fprintf(stderr, "Can't find input size\n"); return 0; } int get_network_output_size_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; image output = get_convolutional_image(layer); return output.h*output.w*output.c; } else if(net.types[i] == DECONVOLUTIONAL){ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; image output = get_deconvolutional_image(layer); return output.h*output.w*output.c; } else if(net.types[i] == DETECTION){ detection_layer layer = *(detection_layer *)net.layers[i]; return get_detection_layer_output_size(layer); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; image output = get_maxpool_image(layer); return output.h*output.w*output.c; } else if(net.types[i] == CROP){ crop_layer layer = *(crop_layer *) net.layers[i]; return layer.c*layer.crop_height*layer.crop_width; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.outputs; } else if(net.types[i] == DROPOUT){ dropout_layer layer = *(dropout_layer *) net.layers[i]; return layer.inputs; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.inputs; } fprintf(stderr, "Can't find output size\n"); return 0; } int resize_network(network net, int h, int w, int c) { int i; for (i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer *layer = (convolutional_layer *)net.layers[i]; resize_convolutional_layer(layer, h, w); image output = get_convolutional_image(*layer); h = output.h; w = output.w; c = output.c; } else if(net.types[i] == DECONVOLUTIONAL){ deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i]; resize_deconvolutional_layer(layer, h, w); image output = get_deconvolutional_image(*layer); h = output.h; w = output.w; c = output.c; }else if(net.types[i] == MAXPOOL){ maxpool_layer *layer = (maxpool_layer *)net.layers[i]; resize_maxpool_layer(layer, h, w); image output = get_maxpool_image(*layer); h = output.h; w = output.w; c = output.c; }else if(net.types[i] == DROPOUT){ dropout_layer *layer = (dropout_layer *)net.layers[i]; resize_dropout_layer(layer, h*w*c); }else if(net.types[i] == NORMALIZATION){ normalization_layer *layer = (normalization_layer *)net.layers[i]; resize_normalization_layer(layer, h, w); image output = get_normalization_image(*layer); h = output.h; w = output.w; c = output.c; }else{ error("Cannot resize this type of layer"); } } return 0; } int get_network_output_size(network net) { int i; for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; return get_network_output_size_layer(net, i); } int get_network_input_size(network net) { return get_network_input_size_layer(net, 0); } detection_layer *get_network_detection_layer(network net) { int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == DETECTION){ detection_layer *layer = (detection_layer *)net.layers[i]; return layer; } } return 0; } image get_network_image_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return get_convolutional_image(layer); } else if(net.types[i] == DECONVOLUTIONAL){ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; return get_deconvolutional_image(layer); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return get_maxpool_image(layer); } else if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; return get_normalization_image(layer); } else if(net.types[i] == DROPOUT){ return get_network_image_layer(net, i-1); } else if(net.types[i] == CROP){ crop_layer layer = *(crop_layer *)net.layers[i]; return get_crop_image(layer); } return make_empty_image(0,0,0); } image get_network_image(network net) { int i; for(i = net.n-1; i >= 0; --i){ image m = get_network_image_layer(net, i); if(m.h != 0) return m; } return make_empty_image(0,0,0); } void visualize_network(network net) { image *prev = 0; int i; char buff[256]; //show_image(get_network_image_layer(net, 0), "Crop"); for(i = 0; i < net.n; ++i){ sprintf(buff, "Layer %d", i); if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; prev = visualize_convolutional_layer(layer, buff, prev); } if(net.types[i] == NORMALIZATION){ normalization_layer layer = *(normalization_layer *)net.layers[i]; visualize_normalization_layer(layer, buff); } } } void top_predictions(network net, int k, int *index) { int size = get_network_output_size(net); float *out = get_network_output(net); top_k(out, size, k, index); } float *network_predict(network net, float *input) { #ifdef GPU if(gpu_index >= 0) return network_predict_gpu(net, input); #endif network_state state; state.input = input; state.truth = 0; state.train = 0; state.delta = 0; forward_network(net, state); float *out = get_network_output(net); return out; } matrix network_predict_data_multi(network net, data test, int n) { int i,j,b,m; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.rows, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } for(m = 0; m < n; ++m){ float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] += out[j+b*k]/n; } } } } free(X); return pred; } matrix network_predict_data(network net, data test) { int i,j,b; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.cols, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] = out[j+b*k]; } } } free(X); return pred; } void print_network(network net) { int i,j; for(i = 0; i < net.n; ++i){ float *output = 0; int n = 0; if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; output = layer.output; image m = get_convolutional_image(layer); n = m.h*m.w*m.c; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; output = layer.output; image m = get_maxpool_image(layer); n = m.h*m.w*m.c; } else if(net.types[i] == CROP){ crop_layer layer = *(crop_layer *)net.layers[i]; output = layer.output; image m = get_crop_image(layer); n = m.h*m.w*m.c; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; output = layer.output; n = layer.outputs; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; output = layer.output; n = layer.inputs; } float mean = mean_array(output, n); float vari = variance_array(output, n); fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); if(n > 100) n = 100; for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); if(n == 100)fprintf(stderr,".....\n"); fprintf(stderr, "\n"); } } void compare_networks(network n1, network n2, data test) { matrix g1 = network_predict_data(n1, test); matrix g2 = network_predict_data(n2, test); int i; int a,b,c,d; a = b = c = d = 0; for(i = 0; i < g1.rows; ++i){ int truth = max_index(test.y.vals[i], test.y.cols); int p1 = max_index(g1.vals[i], g1.cols); int p2 = max_index(g2.vals[i], g2.cols); if(p1 == truth){ if(p2 == truth) ++d; else ++c; }else{ if(p2 == truth) ++b; else ++a; } } printf("%5d %5d\n%5d %5d\n", a, b, c, d); float num = pow((abs(b - c) - 1.), 2.); float den = b + c; printf("%f\n", num/den); } float network_accuracy(network net, data d) { matrix guess = network_predict_data(net, d); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; } float *network_accuracies(network net, data d) { static float acc[2]; matrix guess = network_predict_data(net, d); acc[0] = matrix_topk_accuracy(d.y, guess,1); acc[1] = matrix_topk_accuracy(d.y, guess,5); free_matrix(guess); return acc; } float network_accuracy_multi(network net, data d, int n) { matrix guess = network_predict_data_multi(net, d, n); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; }