darknet/src/gemm.c

325 lines
8.0 KiB
C

#include "gemm.h"
#include "utils.h"
#include "cuda.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
void gemm_bin(int M, int N, int K, float ALPHA,
char *A, int lda,
float *B, int ldb,
float *C, int ldc)
{
int i,j,k;
for(i = 0; i < M; ++i){
for(k = 0; k < K; ++k){
char A_PART = A[i*lda+k];
if(A_PART){
for(j = 0; j < N; ++j){
C[i*ldc+j] += B[k*ldb+j];
}
} else {
for(j = 0; j < N; ++j){
C[i*ldc+j] -= B[k*ldb+j];
}
}
}
}
}
float *random_matrix(int rows, int cols)
{
int i;
float *m = calloc(rows*cols, sizeof(float));
for(i = 0; i < rows*cols; ++i){
m[i] = (float)rand()/RAND_MAX;
}
return m;
}
void time_random_matrix(int TA, int TB, int m, int k, int n)
{
float *a;
if(!TA) a = random_matrix(m,k);
else a = random_matrix(k,m);
int lda = (!TA)?k:m;
float *b;
if(!TB) b = random_matrix(k,n);
else b = random_matrix(n,k);
int ldb = (!TB)?n:k;
float *c = random_matrix(m,n);
int i;
clock_t start = clock(), end;
for(i = 0; i<10; ++i){
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
}
end = clock();
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
free(a);
free(b);
free(c);
}
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float BETA,
float *C, int ldc)
{
gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
}
void gemm_nn(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float *C, int ldc)
{
int i,j,k;
#pragma omp parallel for
for(i = 0; i < M; ++i){
for(k = 0; k < K; ++k){
register float A_PART = ALPHA*A[i*lda+k];
for(j = 0; j < N; ++j){
C[i*ldc+j] += A_PART*B[k*ldb+j];
}
}
}
}
void gemm_nt(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float *C, int ldc)
{
int i,j,k;
#pragma omp parallel for
for(i = 0; i < M; ++i){
for(j = 0; j < N; ++j){
register float sum = 0;
for(k = 0; k < K; ++k){
sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
}
C[i*ldc+j] += sum;
}
}
}
void gemm_tn(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float *C, int ldc)
{
int i,j,k;
#pragma omp parallel for
for(i = 0; i < M; ++i){
for(k = 0; k < K; ++k){
register float A_PART = ALPHA*A[k*lda+i];
for(j = 0; j < N; ++j){
C[i*ldc+j] += A_PART*B[k*ldb+j];
}
}
}
}
void gemm_tt(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float *C, int ldc)
{
int i,j,k;
#pragma omp parallel for
for(i = 0; i < M; ++i){
for(j = 0; j < N; ++j){
register float sum = 0;
for(k = 0; k < K; ++k){
sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
}
C[i*ldc+j] += sum;
}
}
}
void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float BETA,
float *C, int ldc)
{
//printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
int i, j;
for(i = 0; i < M; ++i){
for(j = 0; j < N; ++j){
C[i*ldc + j] *= BETA;
}
}
if(!TA && !TB)
gemm_nn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc);
else if(TA && !TB)
gemm_tn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc);
else if(!TA && TB)
gemm_nt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc);
else
gemm_tt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc);
}
#ifdef GPU
#include <math.h>
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
float *A_gpu, int lda,
float *B_gpu, int ldb,
float BETA,
float *C_gpu, int ldc)
{
cublasHandle_t handle = blas_handle();
cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
(TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
check_error(status);
}
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
{
float *a;
if(!TA) a = random_matrix(m,k);
else a = random_matrix(k,m);
int lda = (!TA)?k:m;
float *b;
if(!TB) b = random_matrix(k,n);
else b = random_matrix(n,k);
int ldb = (!TB)?n:k;
float *c = random_matrix(m,n);
int i;
clock_t start = clock(), end;
for(i = 0; i<32; ++i){
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
}
end = clock();
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
free(a);
free(b);
free(c);
}
void time_gpu(int TA, int TB, int m, int k, int n)
{
int iter = 10;
float *a = random_matrix(m,k);
float *b = random_matrix(k,n);
int lda = (!TA)?k:m;
int ldb = (!TB)?n:k;
float *c = random_matrix(m,n);
float *a_cl = cuda_make_array(a, m*k);
float *b_cl = cuda_make_array(b, k*n);
float *c_cl = cuda_make_array(c, m*n);
int i;
clock_t start = clock(), end;
for(i = 0; i<iter; ++i){
gemm_gpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
cudaThreadSynchronize();
}
double flop = ((double)m)*n*(2.*k + 2.)*iter;
double gflop = flop/pow(10., 9);
end = clock();
double seconds = sec(end-start);
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
cuda_free(a_cl);
cuda_free(b_cl);
cuda_free(c_cl);
free(a);
free(b);
free(c);
}
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
{
srand(0);
float *a;
if(!TA) a = random_matrix(m,k);
else a = random_matrix(k,m);
int lda = (!TA)?k:m;
float *b;
if(!TB) b = random_matrix(k,n);
else b = random_matrix(n,k);
int ldb = (!TB)?n:k;
float *c = random_matrix(m,n);
float *c_gpu = random_matrix(m,n);
memset(c, 0, m*n*sizeof(float));
memset(c_gpu, 0, m*n*sizeof(float));
int i;
//pm(m,k,b);
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
//printf("GPU\n");
//pm(m, n, c_gpu);
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
//printf("\n\nCPU\n");
//pm(m, n, c);
double sse = 0;
for(i = 0; i < m*n; ++i) {
//printf("%f %f\n", c[i], c_gpu[i]);
sse += pow(c[i]-c_gpu[i], 2);
}
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
free(a);
free(b);
free(c);
free(c_gpu);
}
int test_gpu_blas()
{
/*
test_gpu_accuracy(0,0,10,576,75);
test_gpu_accuracy(0,0,17,10,10);
test_gpu_accuracy(1,0,17,10,10);
test_gpu_accuracy(0,1,17,10,10);
test_gpu_accuracy(1,1,17,10,10);
test_gpu_accuracy(0,0,1000,10,100);
test_gpu_accuracy(1,0,1000,10,100);
test_gpu_accuracy(0,1,1000,10,100);
test_gpu_accuracy(1,1,1000,10,100);
test_gpu_accuracy(0,0,10,10,10);
time_gpu(0,0,64,2916,363);
time_gpu(0,0,64,2916,363);
time_gpu(0,0,64,2916,363);
time_gpu(0,0,192,729,1600);
time_gpu(0,0,384,196,1728);
time_gpu(0,0,256,196,3456);
time_gpu(0,0,256,196,2304);
time_gpu(0,0,128,4096,12544);
time_gpu(0,0,128,4096,4096);
*/
time_gpu(0,0,64,75,12544);
time_gpu(0,0,64,75,12544);
time_gpu(0,0,64,75,12544);
time_gpu(0,0,64,576,12544);
time_gpu(0,0,256,2304,784);
time_gpu(1,1,2304,256,784);
time_gpu(0,0,512,4608,196);
time_gpu(1,1,4608,512,196);
return 0;
}
#endif