darknet/src/local_layer.c

294 lines
8.7 KiB
C

#include "local_layer.h"
#include "utils.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
#include "gemm.h"
#include <stdio.h>
#include <time.h>
int local_out_height(local_layer l)
{
int h = l.h;
if (!l.pad) h -= l.size;
else h -= 1;
return h/l.stride + 1;
}
int local_out_width(local_layer l)
{
int w = l.w;
if (!l.pad) w -= l.size;
else w -= 1;
return w/l.stride + 1;
}
local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
{
int i;
local_layer l = {0};
l.type = LOCAL;
l.h = h;
l.w = w;
l.c = c;
l.n = n;
l.batch = batch;
l.stride = stride;
l.size = size;
l.pad = pad;
int out_h = local_out_height(l);
int out_w = local_out_width(l);
int locations = out_h*out_w;
l.out_h = out_h;
l.out_w = out_w;
l.out_c = n;
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = l.w * l.h * l.c;
l.weights = calloc(c*n*size*size*locations, sizeof(float));
l.weight_updates = calloc(c*n*size*size*locations, sizeof(float));
l.biases = calloc(l.outputs, sizeof(float));
l.bias_updates = calloc(l.outputs, sizeof(float));
// float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c));
for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1,1);
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.workspace_size = out_h*out_w*size*size*c;
l.forward = forward_local_layer;
l.backward = backward_local_layer;
l.update = update_local_layer;
#ifdef GPU
l.forward_gpu = forward_local_layer_gpu;
l.backward_gpu = backward_local_layer_gpu;
l.update_gpu = update_local_layer_gpu;
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size*locations);
l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size*locations);
l.biases_gpu = cuda_make_array(l.biases, l.outputs);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs);
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
#endif
l.activation = activation;
fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
return l;
}
void forward_local_layer(const local_layer l, network net)
{
int out_h = local_out_height(l);
int out_w = local_out_width(l);
int i, j;
int locations = out_h * out_w;
for(i = 0; i < l.batch; ++i){
copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
}
for(i = 0; i < l.batch; ++i){
float *input = net.input + i*l.w*l.h*l.c;
im2col_cpu(input, l.c, l.h, l.w,
l.size, l.stride, l.pad, net.workspace);
float *output = l.output + i*l.outputs;
for(j = 0; j < locations; ++j){
float *a = l.weights + j*l.size*l.size*l.c*l.n;
float *b = net.workspace + j;
float *c = output + j;
int m = l.n;
int n = 1;
int k = l.size*l.size*l.c;
gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
}
}
activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_local_layer(local_layer l, network net)
{
int i, j;
int locations = l.out_w*l.out_h;
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
for(i = 0; i < l.batch; ++i){
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
}
for(i = 0; i < l.batch; ++i){
float *input = net.input + i*l.w*l.h*l.c;
im2col_cpu(input, l.c, l.h, l.w,
l.size, l.stride, l.pad, net.workspace);
for(j = 0; j < locations; ++j){
float *a = l.delta + i*l.outputs + j;
float *b = net.workspace + j;
float *c = l.weight_updates + j*l.size*l.size*l.c*l.n;
int m = l.n;
int n = l.size*l.size*l.c;
int k = 1;
gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
}
if(net.delta){
for(j = 0; j < locations; ++j){
float *a = l.weights + j*l.size*l.size*l.c*l.n;
float *b = l.delta + i*l.outputs + j;
float *c = net.workspace + j;
int m = l.size*l.size*l.c;
int n = 1;
int k = l.n;
gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
}
col2im_cpu(net.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, net.delta+i*l.c*l.h*l.w);
}
}
}
void update_local_layer(local_layer l, update_args a)
{
float learning_rate = a.learning_rate*l.learning_rate_scale;
float momentum = a.momentum;
float decay = a.decay;
int batch = a.batch;
int locations = l.out_w*l.out_h;
int size = l.size*l.size*l.c*l.n*locations;
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
scal_cpu(size, momentum, l.weight_updates, 1);
}
#ifdef GPU
void forward_local_layer_gpu(const local_layer l, network net)
{
int out_h = local_out_height(l);
int out_w = local_out_width(l);
int i, j;
int locations = out_h * out_w;
for(i = 0; i < l.batch; ++i){
copy_gpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
}
for(i = 0; i < l.batch; ++i){
float *input = net.input_gpu + i*l.w*l.h*l.c;
im2col_gpu(input, l.c, l.h, l.w,
l.size, l.stride, l.pad, net.workspace);
float *output = l.output_gpu + i*l.outputs;
for(j = 0; j < locations; ++j){
float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n;
float *b = net.workspace + j;
float *c = output + j;
int m = l.n;
int n = 1;
int k = l.size*l.size*l.c;
gemm_gpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
}
}
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation);
}
void backward_local_layer_gpu(local_layer l, network net)
{
int i, j;
int locations = l.out_w*l.out_h;
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
for(i = 0; i < l.batch; ++i){
axpy_gpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
}
for(i = 0; i < l.batch; ++i){
float *input = net.input_gpu + i*l.w*l.h*l.c;
im2col_gpu(input, l.c, l.h, l.w,
l.size, l.stride, l.pad, net.workspace);
for(j = 0; j < locations; ++j){
float *a = l.delta_gpu + i*l.outputs + j;
float *b = net.workspace + j;
float *c = l.weight_updates_gpu + j*l.size*l.size*l.c*l.n;
int m = l.n;
int n = l.size*l.size*l.c;
int k = 1;
gemm_gpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
}
if(net.delta_gpu){
for(j = 0; j < locations; ++j){
float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n;
float *b = l.delta_gpu + i*l.outputs + j;
float *c = net.workspace + j;
int m = l.size*l.size*l.c;
int n = 1;
int k = l.n;
gemm_gpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
}
col2im_gpu(net.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, net.delta_gpu+i*l.c*l.h*l.w);
}
}
}
void update_local_layer_gpu(local_layer l, update_args a)
{
float learning_rate = a.learning_rate*l.learning_rate_scale;
float momentum = a.momentum;
float decay = a.decay;
int batch = a.batch;
int locations = l.out_w*l.out_h;
int size = l.size*l.size*l.c*l.n*locations;
axpy_gpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
scal_gpu(l.outputs, momentum, l.bias_updates_gpu, 1);
axpy_gpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
axpy_gpu(size, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
scal_gpu(size, momentum, l.weight_updates_gpu, 1);
}
void pull_local_layer(local_layer l)
{
int locations = l.out_w*l.out_h;
int size = l.size*l.size*l.c*l.n*locations;
cuda_pull_array(l.weights_gpu, l.weights, size);
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
}
void push_local_layer(local_layer l)
{
int locations = l.out_w*l.out_h;
int size = l.size*l.size*l.c*l.n*locations;
cuda_push_array(l.weights_gpu, l.weights, size);
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
}
#endif