mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
149 lines
4.9 KiB
Plaintext
149 lines
4.9 KiB
Plaintext
#include "cuda_runtime.h"
|
|
#include "curand.h"
|
|
#include "cublas_v2.h"
|
|
|
|
extern "C" {
|
|
#include "im2col.h"
|
|
#include "cuda.h"
|
|
}
|
|
|
|
// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
|
|
// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
|
|
|
|
__global__ void im2col_gpu_kernel(const int n, const float* data_im,
|
|
const int height, const int width, const int ksize,
|
|
const int pad,
|
|
const int stride,
|
|
const int height_col, const int width_col,
|
|
float *data_col) {
|
|
int index = blockIdx.x*blockDim.x+threadIdx.x;
|
|
for(; index < n; index += blockDim.x*gridDim.x){
|
|
int w_out = index % width_col;
|
|
int h_index = index / width_col;
|
|
int h_out = h_index % height_col;
|
|
int channel_in = h_index / height_col;
|
|
int channel_out = channel_in * ksize * ksize;
|
|
int h_in = h_out * stride - pad;
|
|
int w_in = w_out * stride - pad;
|
|
float* data_col_ptr = data_col;
|
|
data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out;
|
|
const float* data_im_ptr = data_im;
|
|
data_im_ptr += (channel_in * height + h_in) * width + w_in;
|
|
for (int i = 0; i < ksize; ++i) {
|
|
for (int j = 0; j < ksize; ++j) {
|
|
int h = h_in + i;
|
|
int w = w_in + j;
|
|
*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
|
|
data_im_ptr[i * width + j] : 0;
|
|
data_col_ptr += height_col * width_col;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void im2col_ongpu(float *im,
|
|
int channels, int height, int width,
|
|
int ksize, int stride, int pad, float *data_col){
|
|
// We are going to launch channels * height_col * width_col kernels, each
|
|
// kernel responsible for copying a single-channel grid.
|
|
pad = pad ? ksize/2 : 0;
|
|
int height_col = (height + 2 * pad - ksize) / stride + 1;
|
|
int width_col = (width + 2 * pad - ksize) / stride + 1;
|
|
int num_kernels = channels * height_col * width_col;
|
|
im2col_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
|
|
BLOCK>>>(
|
|
num_kernels, im, height, width, ksize, pad,
|
|
stride, height_col,
|
|
width_col, data_col);
|
|
}
|
|
/*
|
|
__global__ void im2col_pad_kernel(float *im,
|
|
int channels, int height, int width,
|
|
int ksize, int stride, float *data_col)
|
|
{
|
|
int c,h,w;
|
|
int height_col = 1 + (height-1) / stride;
|
|
int width_col = 1 + (width-1) / stride;
|
|
int channels_col = channels * ksize * ksize;
|
|
|
|
int pad = ksize/2;
|
|
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
int col_size = height_col*width_col*channels_col;
|
|
if (id >= col_size) return;
|
|
|
|
int col_index = id;
|
|
w = id % width_col;
|
|
id /= width_col;
|
|
h = id % height_col;
|
|
id /= height_col;
|
|
c = id % channels_col;
|
|
id /= channels_col;
|
|
|
|
int w_offset = c % ksize;
|
|
int h_offset = (c / ksize) % ksize;
|
|
int im_channel = c / ksize / ksize;
|
|
int im_row = h_offset + h * stride - pad;
|
|
int im_col = w_offset + w * stride - pad;
|
|
|
|
int im_index = im_col + width*(im_row + height*im_channel);
|
|
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
|
|
|
|
data_col[col_index] = val;
|
|
}
|
|
|
|
__global__ void im2col_nopad_kernel(float *im,
|
|
int channels, int height, int width,
|
|
int ksize, int stride, float *data_col)
|
|
{
|
|
int c,h,w;
|
|
int height_col = (height - ksize) / stride + 1;
|
|
int width_col = (width - ksize) / stride + 1;
|
|
int channels_col = channels * ksize * ksize;
|
|
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
int col_size = height_col*width_col*channels_col;
|
|
if (id >= col_size) return;
|
|
|
|
int col_index = id;
|
|
w = id % width_col;
|
|
id /= width_col;
|
|
h = id % height_col;
|
|
id /= height_col;
|
|
c = id % channels_col;
|
|
id /= channels_col;
|
|
|
|
int w_offset = c % ksize;
|
|
int h_offset = (c / ksize) % ksize;
|
|
int im_channel = c / ksize / ksize;
|
|
int im_row = h_offset + h * stride;
|
|
int im_col = w_offset + w * stride;
|
|
|
|
int im_index = im_col + width*(im_row + height*im_channel);
|
|
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
|
|
|
|
data_col[col_index] = val;
|
|
}
|
|
|
|
extern "C" void im2col_ongpu(float *im,
|
|
int channels, int height, int width,
|
|
int ksize, int stride, int pad, float *data_col)
|
|
{
|
|
|
|
int height_col = (height - ksize) / stride + 1;
|
|
int width_col = (width - ksize) / stride + 1;
|
|
int channels_col = channels * ksize * ksize;
|
|
|
|
if (pad){
|
|
height_col = 1 + (height-1) / stride;
|
|
width_col = 1 + (width-1) / stride;
|
|
}
|
|
|
|
size_t n = channels_col*height_col*width_col;
|
|
|
|
if(pad)im2col_pad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, channels, height, width, ksize, stride, data_col);
|
|
else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, channels, height, width, ksize, stride, data_col);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
*/
|