darknet/src/nightmare.c
2015-11-14 12:34:17 -08:00

196 lines
5.5 KiB
C

#include "network.h"
#include "parser.h"
#include "blas.h"
#include "utils.h"
float abs_mean(float *x, int n)
{
int i;
float sum = 0;
for (i = 0; i < n; ++i){
sum += abs(x[i]);
}
return sum/n;
}
void calculate_loss(float *output, float *delta, int n, float thresh)
{
int i;
float mean = mean_array(output, n);
float var = variance_array(output, n);
for(i = 0; i < n; ++i){
if(delta[i] > mean + thresh*sqrt(var)) delta[i] = output[i];
else delta[i] = 0;
}
}
void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm)
{
scale_image(orig, 2);
translate_image(orig, -1);
net->n = max_layer + 1;
int dx = rand()%16 - 8;
int dy = rand()%16 - 8;
int flip = rand()%2;
image crop = crop_image(orig, dx, dy, orig.w, orig.h);
image im = resize_image(crop, (int)(orig.w * scale), (int)(orig.h * scale));
if(flip) flip_image(im);
resize_network(net, im.w, im.h);
layer last = net->layers[net->n-1];
//net->layers[net->n - 1].activation = LINEAR;
image delta = make_image(im.w, im.h, im.c);
network_state state = {0};
#ifdef GPU
state.input = cuda_make_array(im.data, im.w*im.h*im.c);
state.delta = cuda_make_array(im.data, im.w*im.h*im.c);
forward_network_gpu(*net, state);
copy_ongpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1);
cuda_pull_array(last.delta_gpu, last.delta, last.outputs);
calculate_loss(last.delta, last.delta, last.outputs, thresh);
cuda_push_array(last.delta_gpu, last.delta, last.outputs);
backward_network_gpu(*net, state);
cuda_pull_array(state.delta, delta.data, im.w*im.h*im.c);
cuda_free(state.input);
cuda_free(state.delta);
#else
state.input = im.data;
state.delta = delta.data;
forward_network(*net, state);
copy_cpu(last.outputs, last.output, 1, last.delta, 1);
calculate_loss(last.output, last.delta, last.outputs, thresh);
backward_network(*net, state);
#endif
if(flip) flip_image(delta);
//normalize_array(delta.data, delta.w*delta.h*delta.c);
image resized = resize_image(delta, orig.w, orig.h);
image out = crop_image(resized, -dx, -dy, orig.w, orig.h);
/*
image g = grayscale_image(out);
free_image(out);
out = g;
*/
//rate = rate / abs_mean(out.data, out.w*out.h*out.c);
if(norm) normalize_array(out.data, out.w*out.h*out.c);
axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1);
/*
normalize_array(orig.data, orig.w*orig.h*orig.c);
scale_image(orig, sqrt(var));
translate_image(orig, mean);
*/
translate_image(orig, 1);
scale_image(orig, .5);
//normalize_image(orig);
constrain_image(orig);
free_image(crop);
free_image(im);
free_image(delta);
free_image(resized);
free_image(out);
}
void run_nightmare(int argc, char **argv)
{
srand(0);
if(argc < 4){
fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[2];
char *weights = argv[3];
char *input = argv[4];
int max_layer = atoi(argv[5]);
int range = find_int_arg(argc, argv, "-range", 1);
int norm = find_int_arg(argc, argv, "-norm", 1);
int rounds = find_int_arg(argc, argv, "-rounds", 1);
int iters = find_int_arg(argc, argv, "-iters", 10);
int octaves = find_int_arg(argc, argv, "-octaves", 4);
float zoom = find_float_arg(argc, argv, "-zoom", 1.);
float rate = find_float_arg(argc, argv, "-rate", .04);
float thresh = find_float_arg(argc, argv, "-thresh", 1.);
float rotate = find_float_arg(argc, argv, "-rotate", 0);
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
network net = parse_network_cfg(cfg);
load_weights(&net, weights);
char *cfgbase = basecfg(cfg);
char *imbase = basecfg(input);
set_batch_network(&net, 1);
image im = load_image_color(input, 0, 0);
if(0){
float scale = 1;
if(im.w > 512 || im.h > 512){
if(im.w > im.h) scale = 512.0/im.w;
else scale = 512.0/im.h;
}
image resized = resize_image(im, scale*im.w, scale*im.h);
free_image(im);
im = resized;
}
int e;
int n;
for(e = 0; e < rounds; ++e){
fprintf(stderr, "Iteration: ");
fflush(stderr);
for(n = 0; n < iters; ++n){
fprintf(stderr, "%d, ", n);
fflush(stderr);
int layer = max_layer + rand()%range - range/2;
int octave = rand()%octaves;
optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm);
}
fprintf(stderr, "done\n");
if(0){
image g = grayscale_image(im);
free_image(im);
im = g;
}
char buff[256];
if (prefix){
sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e);
}else{
sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e);
}
printf("%d %s\n", e, buff);
save_image(im, buff);
//show_image(im, buff);
//cvWaitKey(0);
if(rotate){
image rot = rotate_image(im, rotate);
free_image(im);
im = rot;
}
image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom);
image resized = resize_image(crop, im.w, im.h);
free_image(im);
free_image(crop);
im = resized;
}
}