mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
141 lines
4.2 KiB
C
141 lines
4.2 KiB
C
#include "darknet.h"
|
|
|
|
void train_tag(char *cfgfile, char *weightfile, int clear)
|
|
{
|
|
srand(time(0));
|
|
float avg_loss = -1;
|
|
char *base = basecfg(cfgfile);
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
printf("%s\n", base);
|
|
network *net = load_network(cfgfile, weightfile, clear);
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
|
int imgs = 1024;
|
|
list *plist = get_paths("/home/pjreddie/tag/train.list");
|
|
char **paths = (char **)list_to_array(plist);
|
|
printf("%d\n", plist->size);
|
|
int N = plist->size;
|
|
clock_t time;
|
|
pthread_t load_thread;
|
|
data train;
|
|
data buffer;
|
|
|
|
load_args args = {0};
|
|
args.w = net->w;
|
|
args.h = net->h;
|
|
|
|
args.min = net->w;
|
|
args.max = net->max_crop;
|
|
args.size = net->w;
|
|
|
|
args.paths = paths;
|
|
args.classes = net->outputs;
|
|
args.n = imgs;
|
|
args.m = N;
|
|
args.d = &buffer;
|
|
args.type = TAG_DATA;
|
|
|
|
args.angle = net->angle;
|
|
args.exposure = net->exposure;
|
|
args.saturation = net->saturation;
|
|
args.hue = net->hue;
|
|
|
|
fprintf(stderr, "%d classes\n", net->outputs);
|
|
|
|
load_thread = load_data_in_thread(args);
|
|
int epoch = (*net->seen)/N;
|
|
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
|
|
load_thread = load_data_in_thread(args);
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
if(avg_loss == -1) avg_loss = loss;
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
|
|
free_data(train);
|
|
if(*net->seen/N > epoch){
|
|
epoch = *net->seen/N;
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
|
save_weights(net, buff);
|
|
}
|
|
if(get_current_batch(net)%100 == 0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup",backup_directory,base);
|
|
save_weights(net, buff);
|
|
}
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
|
|
pthread_join(load_thread, 0);
|
|
free_data(buffer);
|
|
free_network(net);
|
|
free_ptrs((void**)paths, plist->size);
|
|
free_list(plist);
|
|
free(base);
|
|
}
|
|
|
|
void test_tag(char *cfgfile, char *weightfile, char *filename)
|
|
{
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
set_batch_network(net, 1);
|
|
srand(2222222);
|
|
int i = 0;
|
|
char **names = get_labels("data/tags.txt");
|
|
clock_t time;
|
|
int indexes[10];
|
|
char buff[256];
|
|
char *input = buff;
|
|
int size = net->w;
|
|
while(1){
|
|
if(filename){
|
|
strncpy(input, filename, 256);
|
|
}else{
|
|
printf("Enter Image Path: ");
|
|
fflush(stdout);
|
|
input = fgets(input, 256, stdin);
|
|
if(!input) return;
|
|
strtok(input, "\n");
|
|
}
|
|
image im = load_image_color(input, 0, 0);
|
|
image r = resize_min(im, size);
|
|
resize_network(net, r.w, r.h);
|
|
printf("%d %d\n", r.w, r.h);
|
|
|
|
float *X = r.data;
|
|
time=clock();
|
|
float *predictions = network_predict(net, X);
|
|
top_predictions(net, 10, indexes);
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
|
for(i = 0; i < 10; ++i){
|
|
int index = indexes[i];
|
|
printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
|
|
}
|
|
if(r.data != im.data) free_image(r);
|
|
free_image(im);
|
|
if (filename) break;
|
|
}
|
|
}
|
|
|
|
|
|
void run_tag(int argc, char **argv)
|
|
{
|
|
if(argc < 4){
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
return;
|
|
}
|
|
|
|
int clear = find_arg(argc, argv, "-clear");
|
|
char *cfg = argv[3];
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
char *filename = (argc > 5) ? argv[5] : 0;
|
|
if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear);
|
|
else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename);
|
|
}
|
|
|