mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
1140 lines
36 KiB
C
1140 lines
36 KiB
C
#include "darknet/network.h"
|
|
#include "darknet/cost_layer.h"
|
|
#include "darknet/utils.h"
|
|
#include "darknet/parser.h"
|
|
#include "darknet/blas.h"
|
|
|
|
/*
|
|
void train_lsd3(char *fcfg, char *fweight, char *gcfg, char *gweight, char *acfg, char *aweight, int clear)
|
|
{
|
|
#ifdef GPU
|
|
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
|
|
char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
|
|
//char *style_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
|
|
char *style_images = "/home/pjreddie/zelda.txt";
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
srand(time(0));
|
|
network fnet = load_network(fcfg, fweight, clear);
|
|
network gnet = load_network(gcfg, gweight, clear);
|
|
network anet = load_network(acfg, aweight, clear);
|
|
char *gbase = basecfg(gcfg);
|
|
char *abase = basecfg(acfg);
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet.learning_rate, gnet.momentum, gnet.decay);
|
|
int imgs = gnet.batch*gnet.subdivisions;
|
|
int i = *gnet.seen/imgs;
|
|
data train, tbuffer;
|
|
data style, sbuffer;
|
|
|
|
|
|
list *slist = get_paths(style_images);
|
|
char **spaths = (char **)list_to_array(slist);
|
|
|
|
list *tlist = get_paths(train_images);
|
|
char **tpaths = (char **)list_to_array(tlist);
|
|
|
|
load_args targs= get_base_args(gnet);
|
|
targs.paths = tpaths;
|
|
targs.n = imgs;
|
|
targs.m = tlist->size;
|
|
targs.d = &tbuffer;
|
|
targs.type = CLASSIFICATION_DATA;
|
|
targs.classes = 1;
|
|
char *ls[1] = {"zelda"};
|
|
targs.labels = ls;
|
|
|
|
load_args sargs = get_base_args(gnet);
|
|
sargs.paths = spaths;
|
|
sargs.n = imgs;
|
|
sargs.m = slist->size;
|
|
sargs.d = &sbuffer;
|
|
sargs.type = CLASSIFICATION_DATA;
|
|
sargs.classes = 1;
|
|
sargs.labels = ls;
|
|
|
|
pthread_t tload_thread = load_data_in_thread(targs);
|
|
pthread_t sload_thread = load_data_in_thread(sargs);
|
|
clock_t time;
|
|
|
|
float aloss_avg = -1;
|
|
float floss_avg = -1;
|
|
|
|
fnet.train=1;
|
|
int x_size = fnet.inputs*fnet.batch;
|
|
int y_size = fnet.truths*fnet.batch;
|
|
float *X = calloc(x_size, sizeof(float));
|
|
float *y = calloc(y_size, sizeof(float));
|
|
|
|
|
|
int ax_size = anet.inputs*anet.batch;
|
|
int ay_size = anet.truths*anet.batch;
|
|
fill_ongpu(ay_size, .9, anet.truth_gpu, 1);
|
|
anet.delta_gpu = cuda_make_array(0, ax_size);
|
|
anet.train = 1;
|
|
|
|
int gx_size = gnet.inputs*gnet.batch;
|
|
int gy_size = gnet.truths*gnet.batch;
|
|
gstate.input = cuda_make_array(0, gx_size);
|
|
gstate.truth = 0;
|
|
gstate.delta = 0;
|
|
gstate.train = 1;
|
|
|
|
while (get_current_batch(gnet) < gnet.max_batches) {
|
|
i += 1;
|
|
time=clock();
|
|
pthread_join(tload_thread, 0);
|
|
pthread_join(sload_thread, 0);
|
|
train = tbuffer;
|
|
style = sbuffer;
|
|
tload_thread = load_data_in_thread(targs);
|
|
sload_thread = load_data_in_thread(sargs);
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
data generated = copy_data(train);
|
|
time=clock();
|
|
|
|
int j, k;
|
|
float floss = 0;
|
|
for(j = 0; j < fnet.subdivisions; ++j){
|
|
layer imlayer = gnet.layers[gnet.n - 1];
|
|
get_next_batch(train, fnet.batch, j*fnet.batch, X, y);
|
|
|
|
cuda_push_array(fstate.input, X, x_size);
|
|
cuda_push_array(gstate.input, X, gx_size);
|
|
*gnet.seen += gnet.batch;
|
|
|
|
forward_network_gpu(fnet, fstate);
|
|
float *feats = fnet.layers[fnet.n - 2].output_gpu;
|
|
copy_ongpu(y_size, feats, 1, fstate.truth, 1);
|
|
|
|
forward_network_gpu(gnet, gstate);
|
|
float *gen = gnet.layers[gnet.n-1].output_gpu;
|
|
copy_ongpu(x_size, gen, 1, fstate.input, 1);
|
|
|
|
fill_ongpu(x_size, 0, fstate.delta, 1);
|
|
forward_network_gpu(fnet, fstate);
|
|
backward_network_gpu(fnet, fstate);
|
|
//HERE
|
|
|
|
astate.input = gen;
|
|
fill_ongpu(ax_size, 0, astate.delta, 1);
|
|
forward_network_gpu(anet, astate);
|
|
backward_network_gpu(anet, astate);
|
|
|
|
float *delta = imlayer.delta_gpu;
|
|
fill_ongpu(x_size, 0, delta, 1);
|
|
scal_ongpu(x_size, 100, astate.delta, 1);
|
|
scal_ongpu(x_size, .001, fstate.delta, 1);
|
|
axpy_ongpu(x_size, 1, fstate.delta, 1, delta, 1);
|
|
axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);
|
|
|
|
//fill_ongpu(x_size, 0, delta, 1);
|
|
//cuda_push_array(delta, X, x_size);
|
|
//axpy_ongpu(x_size, -1, imlayer.output_gpu, 1, delta, 1);
|
|
//printf("pix error: %f\n", cuda_mag_array(delta, x_size));
|
|
printf("fea error: %f\n", cuda_mag_array(fstate.delta, x_size));
|
|
printf("adv error: %f\n", cuda_mag_array(astate.delta, x_size));
|
|
//axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);
|
|
|
|
backward_network_gpu(gnet, gstate);
|
|
|
|
floss += get_network_cost(fnet) /(fnet.subdivisions*fnet.batch);
|
|
|
|
cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch);
|
|
for(k = 0; k < gnet.batch; ++k){
|
|
int index = j*gnet.batch + k;
|
|
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
|
|
generated.y.vals[index][0] = .1;
|
|
style.y.vals[index][0] = .9;
|
|
}
|
|
}
|
|
|
|
*/
|
|
/*
|
|
image sim = float_to_image(anet.w, anet.h, anet.c, style.X.vals[j]);
|
|
show_image(sim, "style");
|
|
cvWaitKey(0);
|
|
*/
|
|
/*
|
|
|
|
harmless_update_network_gpu(anet);
|
|
|
|
data merge = concat_data(style, generated);
|
|
randomize_data(merge);
|
|
float aloss = train_network(anet, merge);
|
|
|
|
update_network_gpu(gnet);
|
|
|
|
free_data(merge);
|
|
free_data(train);
|
|
free_data(generated);
|
|
free_data(style);
|
|
if (aloss_avg < 0) aloss_avg = aloss;
|
|
if (floss_avg < 0) floss_avg = floss;
|
|
aloss_avg = aloss_avg*.9 + aloss*.1;
|
|
floss_avg = floss_avg*.9 + floss*.1;
|
|
|
|
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, floss, aloss, floss_avg, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
|
|
if(i%1000==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, gbase, i);
|
|
save_weights(gnet, buff);
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
|
|
save_weights(anet, buff);
|
|
}
|
|
if(i%100==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup", backup_directory, gbase);
|
|
save_weights(gnet, buff);
|
|
sprintf(buff, "%s/%s.backup", backup_directory, abase);
|
|
save_weights(anet, buff);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
*/
|
|
|
|
/*
|
|
void train_pix2pix(char *cfg, char *weight, char *acfg, char *aweight, int clear)
|
|
{
|
|
#ifdef GPU
|
|
//char *train_images = "/home/pjreddie/data/coco/train1.txt";
|
|
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
|
|
char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
srand(time(0));
|
|
char *base = basecfg(cfg);
|
|
char *abase = basecfg(acfg);
|
|
printf("%s\n", base);
|
|
network net = load_network(cfg, weight, clear);
|
|
network anet = load_network(acfg, aweight, clear);
|
|
|
|
int i, j, k;
|
|
layer imlayer = {0};
|
|
for (i = 0; i < net.n; ++i) {
|
|
if (net.layers[i].out_c == 3) {
|
|
imlayer = net.layers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
int imgs = net.batch*net.subdivisions;
|
|
i = *net.seen/imgs;
|
|
data train, buffer;
|
|
|
|
|
|
list *plist = get_paths(train_images);
|
|
//int N = plist->size;
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
load_args args = {0};
|
|
args.w = net.w;
|
|
args.h = net.h;
|
|
args.paths = paths;
|
|
args.n = imgs;
|
|
args.m = plist->size;
|
|
args.d = &buffer;
|
|
|
|
args.min = net.min_crop;
|
|
args.max = net.max_crop;
|
|
args.angle = net.angle;
|
|
args.aspect = net.aspect;
|
|
args.exposure = net.exposure;
|
|
args.saturation = net.saturation;
|
|
args.hue = net.hue;
|
|
args.size = net.w;
|
|
args.type = CLASSIFICATION_DATA;
|
|
args.classes = 1;
|
|
char *ls[1] = {"coco"};
|
|
args.labels = ls;
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
|
clock_t time;
|
|
|
|
network_state gstate = {0};
|
|
gstate.index = 0;
|
|
gstate.net = net;
|
|
int x_size = get_network_input_size(net)*net.batch;
|
|
int y_size = x_size;
|
|
gstate.input = cuda_make_array(0, x_size);
|
|
gstate.truth = cuda_make_array(0, y_size);
|
|
gstate.delta = 0;
|
|
gstate.train = 1;
|
|
float *pixs = calloc(x_size, sizeof(float));
|
|
float *graypixs = calloc(x_size, sizeof(float));
|
|
float *y = calloc(y_size, sizeof(float));
|
|
|
|
network_state astate = {0};
|
|
astate.index = 0;
|
|
astate.net = anet;
|
|
int ay_size = get_network_output_size(anet)*anet.batch;
|
|
astate.input = 0;
|
|
astate.truth = 0;
|
|
astate.delta = 0;
|
|
astate.train = 1;
|
|
|
|
float *imerror = cuda_make_array(0, imlayer.outputs);
|
|
float *ones_gpu = cuda_make_array(0, ay_size);
|
|
fill_ongpu(ay_size, .9, ones_gpu, 1);
|
|
|
|
float aloss_avg = -1;
|
|
float gloss_avg = -1;
|
|
|
|
//data generated = copy_data(train);
|
|
|
|
while (get_current_batch(net) < net.max_batches) {
|
|
i += 1;
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
load_thread = load_data_in_thread(args);
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
data gray = copy_data(train);
|
|
for(j = 0; j < imgs; ++j){
|
|
image gim = float_to_image(net.w, net.h, net.c, gray.X.vals[j]);
|
|
grayscale_image_3c(gim);
|
|
train.y.vals[j][0] = .9;
|
|
|
|
image yim = float_to_image(net.w, net.h, net.c, train.X.vals[j]);
|
|
//rgb_to_yuv(yim);
|
|
}
|
|
time=clock();
|
|
float gloss = 0;
|
|
|
|
for(j = 0; j < net.subdivisions; ++j){
|
|
get_next_batch(train, net.batch, j*net.batch, pixs, y);
|
|
get_next_batch(gray, net.batch, j*net.batch, graypixs, y);
|
|
cuda_push_array(gstate.input, graypixs, x_size);
|
|
cuda_push_array(gstate.truth, pixs, y_size);
|
|
*/
|
|
/*
|
|
image origi = float_to_image(net.w, net.h, 3, pixs);
|
|
image grayi = float_to_image(net.w, net.h, 3, graypixs);
|
|
show_image(grayi, "gray");
|
|
show_image(origi, "orig");
|
|
cvWaitKey(0);
|
|
*/
|
|
/*
|
|
*net.seen += net.batch;
|
|
forward_network_gpu(net, gstate);
|
|
|
|
fill_ongpu(imlayer.outputs, 0, imerror, 1);
|
|
astate.input = imlayer.output_gpu;
|
|
astate.delta = imerror;
|
|
astate.truth = ones_gpu;
|
|
forward_network_gpu(anet, astate);
|
|
backward_network_gpu(anet, astate);
|
|
|
|
scal_ongpu(imlayer.outputs, .1, net.layers[net.n-1].delta_gpu, 1);
|
|
|
|
backward_network_gpu(net, gstate);
|
|
|
|
scal_ongpu(imlayer.outputs, 1000, imerror, 1);
|
|
|
|
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
|
|
printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs));
|
|
|
|
axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
|
|
|
|
gloss += get_network_cost(net) /(net.subdivisions*net.batch);
|
|
|
|
cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch);
|
|
for(k = 0; k < net.batch; ++k){
|
|
int index = j*net.batch + k;
|
|
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1);
|
|
gray.y.vals[index][0] = .1;
|
|
}
|
|
}
|
|
harmless_update_network_gpu(anet);
|
|
|
|
data merge = concat_data(train, gray);
|
|
randomize_data(merge);
|
|
float aloss = train_network(anet, merge);
|
|
|
|
update_network_gpu(net);
|
|
update_network_gpu(anet);
|
|
free_data(merge);
|
|
free_data(train);
|
|
free_data(gray);
|
|
if (aloss_avg < 0) aloss_avg = aloss;
|
|
aloss_avg = aloss_avg*.9 + aloss*.1;
|
|
gloss_avg = gloss_avg*.9 + gloss*.1;
|
|
|
|
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
|
|
if(i%1000==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
save_weights(net, buff);
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
|
|
save_weights(anet, buff);
|
|
}
|
|
if(i%100==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
|
save_weights(net, buff);
|
|
sprintf(buff, "%s/%s.backup", backup_directory, abase);
|
|
save_weights(anet, buff);
|
|
}
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
#endif
|
|
}
|
|
*/
|
|
|
|
void test_dcgan(char *cfgfile, char *weightfile)
|
|
{
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
set_batch_network(&net, 1);
|
|
srand(2222222);
|
|
|
|
clock_t time;
|
|
char buff[256];
|
|
char *input = buff;
|
|
int i, imlayer = 0;
|
|
|
|
for (i = 0; i < net.n; ++i) {
|
|
if (net.layers[i].out_c == 3) {
|
|
imlayer = i;
|
|
printf("%d\n", i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
while(1){
|
|
image im = make_image(net.w, net.h, net.c);
|
|
int i;
|
|
for(i = 0; i < im.w*im.h*im.c; ++i){
|
|
im.data[i] = rand_normal();
|
|
}
|
|
|
|
float *X = im.data;
|
|
time=clock();
|
|
network_predict(net, X);
|
|
image out = get_network_image_layer(net, imlayer);
|
|
//yuv_to_rgb(out);
|
|
normalize_image(out);
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
|
show_image(out, "out");
|
|
save_image(out, "out");
|
|
#ifdef OPENCV
|
|
cvWaitKey(0);
|
|
#endif
|
|
|
|
free_image(im);
|
|
}
|
|
}
|
|
|
|
void dcgan_batch(network gnet, network anet)
|
|
{
|
|
//float *input = calloc(x_size, sizeof(float));
|
|
}
|
|
|
|
|
|
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images)
|
|
{
|
|
#ifdef GPU
|
|
//char *train_images = "/home/pjreddie/data/coco/train1.txt";
|
|
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
|
|
//char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
|
|
//char *train_images = "data/64.txt";
|
|
//char *train_images = "data/alp.txt";
|
|
//char *train_images = "data/cifar.txt";
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
srand(time(0));
|
|
char *base = basecfg(cfg);
|
|
char *abase = basecfg(acfg);
|
|
printf("%s\n", base);
|
|
network gnet = load_network(cfg, weight, clear);
|
|
network anet = load_network(acfg, aweight, clear);
|
|
float orig_rate = anet.learning_rate;
|
|
|
|
int start = 0;
|
|
int i, j, k;
|
|
layer imlayer = {0};
|
|
for (i = 0; i < gnet.n; ++i) {
|
|
if (gnet.layers[i].out_c == 3) {
|
|
imlayer = gnet.layers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet.learning_rate, gnet.momentum, gnet.decay);
|
|
int imgs = gnet.batch*gnet.subdivisions;
|
|
i = *gnet.seen/imgs;
|
|
data train, buffer;
|
|
|
|
|
|
list *plist = get_paths(train_images);
|
|
//int N = plist->size;
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
load_args args= get_base_args(anet);
|
|
args.paths = paths;
|
|
args.n = imgs;
|
|
args.m = plist->size;
|
|
args.d = &buffer;
|
|
args.type = CLASSIFICATION_DATA;
|
|
args.threads=16;
|
|
args.classes = 1;
|
|
char *ls[2] = {"imagenet", "zzzzzzzz"};
|
|
args.labels = ls;
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
|
clock_t time;
|
|
|
|
gnet.train = 1;
|
|
anet.train = 1;
|
|
|
|
int x_size = gnet.inputs*gnet.batch;
|
|
int y_size = gnet.truths*gnet.batch;
|
|
float *imerror = cuda_make_array(0, y_size);
|
|
|
|
int ay_size = anet.truths*anet.batch;
|
|
|
|
float aloss_avg = -1;
|
|
|
|
//data generated = copy_data(train);
|
|
|
|
while (get_current_batch(gnet) < gnet.max_batches) {
|
|
start += 1;
|
|
i += 1;
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
|
|
//translate_data_rows(train, -.5);
|
|
//scale_data_rows(train, 2);
|
|
|
|
load_thread = load_data_in_thread(args);
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
data gen = copy_data(train);
|
|
for (j = 0; j < imgs; ++j) {
|
|
train.y.vals[j][0] = .95;
|
|
gen.y.vals[j][0] = .05;
|
|
}
|
|
time=clock();
|
|
|
|
for(j = 0; j < gnet.subdivisions; ++j){
|
|
get_next_batch(train, gnet.batch, j*gnet.batch, gnet.truth, 0);
|
|
int z;
|
|
for(z = 0; z < x_size; ++z){
|
|
gnet.input[z] = rand_normal();
|
|
}
|
|
|
|
cuda_push_array(gnet.input_gpu, gnet.input, x_size);
|
|
cuda_push_array(gnet.truth_gpu, gnet.truth, y_size);
|
|
*gnet.seen += gnet.batch;
|
|
forward_network_gpu(gnet);
|
|
|
|
fill_ongpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
|
|
fill_ongpu(anet.truths*anet.batch, .95, anet.truth_gpu, 1);
|
|
copy_ongpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1);
|
|
anet.delta_gpu = imerror;
|
|
forward_network_gpu(anet);
|
|
backward_network_gpu(anet);
|
|
|
|
float genaloss = *anet.cost / anet.batch;
|
|
printf("%f\n", genaloss);
|
|
|
|
scal_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
|
|
scal_ongpu(imlayer.outputs*imlayer.batch, .00, gnet.layers[gnet.n-1].delta_gpu, 1);
|
|
|
|
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
|
|
printf("features %f\n", cuda_mag_array(gnet.layers[gnet.n-1].delta_gpu, imlayer.outputs*imlayer.batch));
|
|
|
|
axpy_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet.layers[gnet.n-1].delta_gpu, 1);
|
|
|
|
backward_network_gpu(gnet);
|
|
|
|
for(k = 0; k < gnet.batch; ++k){
|
|
int index = j*gnet.batch + k;
|
|
copy_cpu(gnet.outputs, gnet.output + k*gnet.outputs, 1, gen.X.vals[index], 1);
|
|
}
|
|
}
|
|
harmless_update_network_gpu(anet);
|
|
|
|
data merge = concat_data(train, gen);
|
|
//randomize_data(merge);
|
|
float aloss = train_network(anet, merge);
|
|
|
|
//translate_image(im, 1);
|
|
//scale_image(im, .5);
|
|
//translate_image(im2, 1);
|
|
//scale_image(im2, .5);
|
|
#ifdef OPENCV
|
|
if(display){
|
|
image im = float_to_image(anet.w, anet.h, anet.c, gen.X.vals[0]);
|
|
image im2 = float_to_image(anet.w, anet.h, anet.c, train.X.vals[0]);
|
|
show_image(im, "gen");
|
|
show_image(im2, "train");
|
|
cvWaitKey(50);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
if(aloss < .1){
|
|
anet.learning_rate = 0;
|
|
} else if (aloss > .3){
|
|
anet.learning_rate = orig_rate;
|
|
}
|
|
*/
|
|
|
|
update_network_gpu(gnet);
|
|
|
|
free_data(merge);
|
|
free_data(train);
|
|
free_data(gen);
|
|
if (aloss_avg < 0) aloss_avg = aloss;
|
|
aloss_avg = aloss_avg*.9 + aloss*.1;
|
|
|
|
printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
|
|
if(i%10000==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
save_weights(gnet, buff);
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
|
|
save_weights(anet, buff);
|
|
}
|
|
if(i%1000==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
|
save_weights(gnet, buff);
|
|
sprintf(buff, "%s/%s.backup", backup_directory, abase);
|
|
save_weights(anet, buff);
|
|
}
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
save_weights(gnet, buff);
|
|
#endif
|
|
}
|
|
|
|
void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display)
|
|
{
|
|
#ifdef GPU
|
|
//char *train_images = "/home/pjreddie/data/coco/train1.txt";
|
|
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
|
|
char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
srand(time(0));
|
|
char *base = basecfg(cfg);
|
|
char *abase = basecfg(acfg);
|
|
printf("%s\n", base);
|
|
network net = load_network(cfg, weight, clear);
|
|
network anet = load_network(acfg, aweight, clear);
|
|
|
|
int i, j, k;
|
|
layer imlayer = {0};
|
|
for (i = 0; i < net.n; ++i) {
|
|
if (net.layers[i].out_c == 3) {
|
|
imlayer = net.layers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
int imgs = net.batch*net.subdivisions;
|
|
i = *net.seen/imgs;
|
|
data train, buffer;
|
|
|
|
|
|
list *plist = get_paths(train_images);
|
|
//int N = plist->size;
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
load_args args= get_base_args(net);
|
|
args.paths = paths;
|
|
args.n = imgs;
|
|
args.m = plist->size;
|
|
args.d = &buffer;
|
|
|
|
args.type = CLASSIFICATION_DATA;
|
|
args.classes = 1;
|
|
char *ls[2] = {"imagenet"};
|
|
args.labels = ls;
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
|
clock_t time;
|
|
|
|
int x_size = net.inputs*net.batch;
|
|
int y_size = x_size;
|
|
net.delta = 0;
|
|
net.train = 1;
|
|
float *pixs = calloc(x_size, sizeof(float));
|
|
float *graypixs = calloc(x_size, sizeof(float));
|
|
float *y = calloc(y_size, sizeof(float));
|
|
|
|
int ay_size = anet.outputs*anet.batch;
|
|
anet.delta = 0;
|
|
anet.train = 1;
|
|
|
|
float *imerror = cuda_make_array(0, imlayer.outputs*imlayer.batch);
|
|
|
|
float aloss_avg = -1;
|
|
float gloss_avg = -1;
|
|
|
|
//data generated = copy_data(train);
|
|
|
|
while (get_current_batch(net) < net.max_batches) {
|
|
i += 1;
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
load_thread = load_data_in_thread(args);
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
data gray = copy_data(train);
|
|
for(j = 0; j < imgs; ++j){
|
|
image gim = float_to_image(net.w, net.h, net.c, gray.X.vals[j]);
|
|
grayscale_image_3c(gim);
|
|
train.y.vals[j][0] = .95;
|
|
gray.y.vals[j][0] = .05;
|
|
}
|
|
time=clock();
|
|
float gloss = 0;
|
|
|
|
for(j = 0; j < net.subdivisions; ++j){
|
|
get_next_batch(train, net.batch, j*net.batch, pixs, 0);
|
|
get_next_batch(gray, net.batch, j*net.batch, graypixs, 0);
|
|
cuda_push_array(net.input_gpu, graypixs, net.inputs*net.batch);
|
|
cuda_push_array(net.truth_gpu, pixs, net.truths*net.batch);
|
|
/*
|
|
image origi = float_to_image(net.w, net.h, 3, pixs);
|
|
image grayi = float_to_image(net.w, net.h, 3, graypixs);
|
|
show_image(grayi, "gray");
|
|
show_image(origi, "orig");
|
|
cvWaitKey(0);
|
|
*/
|
|
*net.seen += net.batch;
|
|
forward_network_gpu(net);
|
|
|
|
fill_ongpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
|
|
copy_ongpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1);
|
|
fill_ongpu(anet.inputs*anet.batch, .95, anet.truth_gpu, 1);
|
|
anet.delta_gpu = imerror;
|
|
forward_network_gpu(anet);
|
|
backward_network_gpu(anet);
|
|
|
|
scal_ongpu(imlayer.outputs*imlayer.batch, 1./100., net.layers[net.n-1].delta_gpu, 1);
|
|
|
|
scal_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
|
|
|
|
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
|
|
printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs*imlayer.batch));
|
|
|
|
axpy_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, net.layers[net.n-1].delta_gpu, 1);
|
|
|
|
backward_network_gpu(net);
|
|
|
|
|
|
gloss += *net.cost /(net.subdivisions*net.batch);
|
|
|
|
for(k = 0; k < net.batch; ++k){
|
|
int index = j*net.batch + k;
|
|
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1);
|
|
}
|
|
}
|
|
harmless_update_network_gpu(anet);
|
|
|
|
data merge = concat_data(train, gray);
|
|
//randomize_data(merge);
|
|
float aloss = train_network(anet, merge);
|
|
|
|
update_network_gpu(net);
|
|
|
|
#ifdef OPENCV
|
|
if(display){
|
|
image im = float_to_image(anet.w, anet.h, anet.c, gray.X.vals[0]);
|
|
image im2 = float_to_image(anet.w, anet.h, anet.c, train.X.vals[0]);
|
|
show_image(im, "gen");
|
|
show_image(im2, "train");
|
|
cvWaitKey(50);
|
|
}
|
|
#endif
|
|
free_data(merge);
|
|
free_data(train);
|
|
free_data(gray);
|
|
if (aloss_avg < 0) aloss_avg = aloss;
|
|
aloss_avg = aloss_avg*.9 + aloss*.1;
|
|
gloss_avg = gloss_avg*.9 + gloss*.1;
|
|
|
|
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
|
|
if(i%1000==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
save_weights(net, buff);
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
|
|
save_weights(anet, buff);
|
|
}
|
|
if(i%100==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
|
save_weights(net, buff);
|
|
sprintf(buff, "%s/%s.backup", backup_directory, abase);
|
|
save_weights(anet, buff);
|
|
}
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear)
|
|
{
|
|
#ifdef GPU
|
|
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
srand(time(0));
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
if(clear) *net.seen = 0;
|
|
|
|
char *abase = basecfg(acfgfile);
|
|
network anet = parse_network_cfg(acfgfile);
|
|
if(aweightfile){
|
|
load_weights(&anet, aweightfile);
|
|
}
|
|
if(clear) *anet.seen = 0;
|
|
|
|
int i, j, k;
|
|
layer imlayer = {0};
|
|
for (i = 0; i < net.n; ++i) {
|
|
if (net.layers[i].out_c == 3) {
|
|
imlayer = net.layers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
int imgs = net.batch*net.subdivisions;
|
|
i = *net.seen/imgs;
|
|
data train, buffer;
|
|
|
|
|
|
list *plist = get_paths(train_images);
|
|
//int N = plist->size;
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
load_args args = {0};
|
|
args.w = net.w;
|
|
args.h = net.h;
|
|
args.paths = paths;
|
|
args.n = imgs;
|
|
args.m = plist->size;
|
|
args.d = &buffer;
|
|
|
|
args.min = net.min_crop;
|
|
args.max = net.max_crop;
|
|
args.angle = net.angle;
|
|
args.aspect = net.aspect;
|
|
args.exposure = net.exposure;
|
|
args.saturation = net.saturation;
|
|
args.hue = net.hue;
|
|
args.size = net.w;
|
|
args.type = CLASSIFICATION_DATA;
|
|
args.classes = 1;
|
|
char *ls[1] = {"coco"};
|
|
args.labels = ls;
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
|
clock_t time;
|
|
|
|
network_state gstate = {0};
|
|
gstate.index = 0;
|
|
gstate.net = net;
|
|
int x_size = get_network_input_size(net)*net.batch;
|
|
int y_size = 1*net.batch;
|
|
gstate.input = cuda_make_array(0, x_size);
|
|
gstate.truth = 0;
|
|
gstate.delta = 0;
|
|
gstate.train = 1;
|
|
float *X = calloc(x_size, sizeof(float));
|
|
float *y = calloc(y_size, sizeof(float));
|
|
|
|
network_state astate = {0};
|
|
astate.index = 0;
|
|
astate.net = anet;
|
|
int ay_size = get_network_output_size(anet)*anet.batch;
|
|
astate.input = 0;
|
|
astate.truth = 0;
|
|
astate.delta = 0;
|
|
astate.train = 1;
|
|
|
|
float *imerror = cuda_make_array(0, imlayer.outputs);
|
|
float *ones_gpu = cuda_make_array(0, ay_size);
|
|
fill_ongpu(ay_size, 1, ones_gpu, 1);
|
|
|
|
float aloss_avg = -1;
|
|
float gloss_avg = -1;
|
|
|
|
//data generated = copy_data(train);
|
|
|
|
while (get_current_batch(net) < net.max_batches) {
|
|
i += 1;
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
load_thread = load_data_in_thread(args);
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
data generated = copy_data(train);
|
|
time=clock();
|
|
float gloss = 0;
|
|
|
|
for(j = 0; j < net.subdivisions; ++j){
|
|
get_next_batch(train, net.batch, j*net.batch, X, y);
|
|
cuda_push_array(gstate.input, X, x_size);
|
|
*net.seen += net.batch;
|
|
forward_network_gpu(net, gstate);
|
|
|
|
fill_ongpu(imlayer.outputs, 0, imerror, 1);
|
|
astate.input = imlayer.output_gpu;
|
|
astate.delta = imerror;
|
|
astate.truth = ones_gpu;
|
|
forward_network_gpu(anet, astate);
|
|
backward_network_gpu(anet, astate);
|
|
|
|
scal_ongpu(imlayer.outputs, 1, imerror, 1);
|
|
axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
|
|
|
|
backward_network_gpu(net, gstate);
|
|
|
|
printf("features %f\n", cuda_mag_array(imlayer.delta_gpu, imlayer.outputs));
|
|
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
|
|
|
|
gloss += get_network_cost(net) /(net.subdivisions*net.batch);
|
|
|
|
cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch);
|
|
for(k = 0; k < net.batch; ++k){
|
|
int index = j*net.batch + k;
|
|
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
|
|
generated.y.vals[index][0] = 0;
|
|
}
|
|
}
|
|
harmless_update_network_gpu(anet);
|
|
|
|
data merge = concat_data(train, generated);
|
|
randomize_data(merge);
|
|
float aloss = train_network(anet, merge);
|
|
|
|
update_network_gpu(net);
|
|
update_network_gpu(anet);
|
|
free_data(merge);
|
|
free_data(train);
|
|
free_data(generated);
|
|
if (aloss_avg < 0) aloss_avg = aloss;
|
|
aloss_avg = aloss_avg*.9 + aloss*.1;
|
|
gloss_avg = gloss_avg*.9 + gloss*.1;
|
|
|
|
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
|
|
if(i%1000==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
save_weights(net, buff);
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
|
|
save_weights(anet, buff);
|
|
}
|
|
if(i%100==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
|
save_weights(net, buff);
|
|
sprintf(buff, "%s/%s.backup", backup_directory, abase);
|
|
save_weights(anet, buff);
|
|
}
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
#endif
|
|
}
|
|
*/
|
|
|
|
/*
|
|
void train_lsd(char *cfgfile, char *weightfile, int clear)
|
|
{
|
|
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
srand(time(0));
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
float avg_loss = -1;
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
if(clear) *net.seen = 0;
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
int imgs = net.batch*net.subdivisions;
|
|
int i = *net.seen/imgs;
|
|
data train, buffer;
|
|
|
|
|
|
list *plist = get_paths(train_images);
|
|
//int N = plist->size;
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
load_args args = {0};
|
|
args.w = net.w;
|
|
args.h = net.h;
|
|
args.paths = paths;
|
|
args.n = imgs;
|
|
args.m = plist->size;
|
|
args.d = &buffer;
|
|
|
|
args.min = net.min_crop;
|
|
args.max = net.max_crop;
|
|
args.angle = net.angle;
|
|
args.aspect = net.aspect;
|
|
args.exposure = net.exposure;
|
|
args.saturation = net.saturation;
|
|
args.hue = net.hue;
|
|
args.size = net.w;
|
|
args.type = CLASSIFICATION_DATA;
|
|
args.classes = 1;
|
|
char *ls[1] = {"coco"};
|
|
args.labels = ls;
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
|
clock_t time;
|
|
//while(i*imgs < N*120){
|
|
while(get_current_batch(net) < net.max_batches){
|
|
i += 1;
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
load_thread = load_data_in_thread(args);
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
if (avg_loss < 0) avg_loss = loss;
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
|
if(i%1000==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
save_weights(net, buff);
|
|
}
|
|
if(i%100==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
|
save_weights(net, buff);
|
|
}
|
|
free_data(train);
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
}
|
|
*/
|
|
|
|
void test_lsd(char *cfgfile, char *weightfile, char *filename, int gray)
|
|
{
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
set_batch_network(&net, 1);
|
|
srand(2222222);
|
|
|
|
clock_t time;
|
|
char buff[256];
|
|
char *input = buff;
|
|
int i, imlayer = 0;
|
|
|
|
for (i = 0; i < net.n; ++i) {
|
|
if (net.layers[i].out_c == 3) {
|
|
imlayer = i;
|
|
printf("%d\n", i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
while(1){
|
|
if(filename){
|
|
strncpy(input, filename, 256);
|
|
}else{
|
|
printf("Enter Image Path: ");
|
|
fflush(stdout);
|
|
input = fgets(input, 256, stdin);
|
|
if(!input) return;
|
|
strtok(input, "\n");
|
|
}
|
|
image im = load_image_color(input, 0, 0);
|
|
image resized = resize_min(im, net.w);
|
|
image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
|
|
if(gray) grayscale_image_3c(crop);
|
|
|
|
float *X = crop.data;
|
|
time=clock();
|
|
network_predict(net, X);
|
|
image out = get_network_image_layer(net, imlayer);
|
|
//yuv_to_rgb(out);
|
|
constrain_image(out);
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
|
show_image(out, "out");
|
|
show_image(crop, "crop");
|
|
save_image(out, "out");
|
|
#ifdef OPENCV
|
|
cvWaitKey(0);
|
|
#endif
|
|
|
|
free_image(im);
|
|
free_image(resized);
|
|
free_image(crop);
|
|
if (filename) break;
|
|
}
|
|
}
|
|
|
|
|
|
void run_lsd(int argc, char **argv)
|
|
{
|
|
if(argc < 4){
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
return;
|
|
}
|
|
|
|
int clear = find_arg(argc, argv, "-clear");
|
|
int display = find_arg(argc, argv, "-display");
|
|
char *file = find_char_arg(argc, argv, "-file", "/home/pjreddie/data/imagenet/imagenet1k.train.list");
|
|
|
|
char *cfg = argv[3];
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
char *filename = (argc > 5) ? argv[5] : 0;
|
|
char *acfg = argv[5];
|
|
char *aweights = (argc > 6) ? argv[6] : 0;
|
|
//if(0==strcmp(argv[2], "train")) train_lsd(cfg, weights, clear);
|
|
//else if(0==strcmp(argv[2], "train2")) train_lsd2(cfg, weights, acfg, aweights, clear);
|
|
//else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear);
|
|
//else if(0==strcmp(argv[2], "train3")) train_lsd3(argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], clear);
|
|
if(0==strcmp(argv[2], "traingan")) train_dcgan(cfg, weights, acfg, aweights, clear, display, file);
|
|
else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear, display);
|
|
else if(0==strcmp(argv[2], "gan")) test_dcgan(cfg, weights);
|
|
else if(0==strcmp(argv[2], "test")) test_lsd(cfg, weights, filename, 0);
|
|
else if(0==strcmp(argv[2], "color")) test_lsd(cfg, weights, filename, 1);
|
|
/*
|
|
else if(0==strcmp(argv[2], "valid")) validate_lsd(cfg, weights);
|
|
*/
|
|
}
|