darknet/src/softmax_layer.c
2017-05-31 21:06:35 -07:00

88 lines
2.6 KiB
C

#include "darknet/softmax_layer.h"
#include "darknet/blas.h"
#include "darknet/cuda.h"
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
softmax_layer make_softmax_layer(int batch, int inputs, int groups)
{
assert(inputs%groups == 0);
fprintf(stderr, "softmax %4d\n", inputs);
softmax_layer l = {0};
l.type = SOFTMAX;
l.batch = batch;
l.groups = groups;
l.inputs = inputs;
l.outputs = inputs;
l.output = calloc(inputs*batch, sizeof(float));
l.delta = calloc(inputs*batch, sizeof(float));
l.forward = forward_softmax_layer;
l.backward = backward_softmax_layer;
#ifdef GPU
l.forward_gpu = forward_softmax_layer_gpu;
l.backward_gpu = backward_softmax_layer_gpu;
l.output_gpu = cuda_make_array(l.output, inputs*batch);
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
#endif
return l;
}
void forward_softmax_layer(const softmax_layer l, network net)
{
if(l.softmax_tree){
int i;
int count = 0;
for (i = 0; i < l.softmax_tree->groups; ++i) {
int group_size = l.softmax_tree->group_size[i];
softmax_cpu(net.input + count, group_size, l.batch, l.inputs, 1, 0, 1, l.temperature, l.output + count);
count += group_size;
}
} else {
softmax_cpu(net.input, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output);
}
}
void backward_softmax_layer(const softmax_layer l, network net)
{
axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, net.delta, 1);
}
#ifdef GPU
void pull_softmax_layer_output(const softmax_layer layer)
{
cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
}
void forward_softmax_layer_gpu(const softmax_layer l, network net)
{
if(l.softmax_tree){
int i;
int count = 0;
for (i = 0; i < l.softmax_tree->groups; ++i) {
int group_size = l.softmax_tree->group_size[i];
softmax_gpu(net.input_gpu + count, group_size, l.batch, l.inputs, 1, 0, 1, l.temperature, l.output_gpu + count);
count += group_size;
}
} else {
if(l.spatial){
softmax_gpu(net.input_gpu, l.c, l.batch*l.c, l.inputs/l.c, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu);
}else{
softmax_gpu(net.input_gpu, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output_gpu);
}
}
}
void backward_softmax_layer_gpu(const softmax_layer layer, network net)
{
axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, net.delta_gpu, 1);
}
#endif