darknet/src/reorg_layer.c
2016-09-24 23:12:54 -07:00

118 lines
3.3 KiB
C

#include "reorg_layer.h"
#include "cuda.h"
#include "blas.h"
#include <stdio.h>
layer make_reorg_layer(int batch, int h, int w, int c, int stride)
{
layer l = {0};
l.type = REORG;
l.batch = batch;
l.stride = stride;
l.h = h;
l.w = w;
l.c = c;
l.out_w = w*stride;
l.out_h = h*stride;
l.out_c = c/(stride*stride);
fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c);
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = h*w*c;
int output_size = l.out_h * l.out_w * l.out_c * batch;
l.output = calloc(output_size, sizeof(float));
l.delta = calloc(output_size, sizeof(float));
l.forward = forward_reorg_layer;
l.backward = backward_reorg_layer;
#ifdef GPU
l.forward_gpu = forward_reorg_layer_gpu;
l.backward_gpu = backward_reorg_layer_gpu;
l.output_gpu = cuda_make_array(l.output, output_size);
l.delta_gpu = cuda_make_array(l.delta, output_size);
#endif
return l;
}
void resize_reorg_layer(layer *l, int w, int h)
{
int stride = l->stride;
l->h = h;
l->w = w;
l->out_w = w*stride;
l->out_h = h*stride;
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->outputs;
int output_size = l->outputs * l->batch;
l->output = realloc(l->output, output_size * sizeof(float));
l->delta = realloc(l->delta, output_size * sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->output_gpu = cuda_make_array(l->output, output_size);
l->delta_gpu = cuda_make_array(l->delta, output_size);
#endif
}
void forward_reorg_layer(const layer l, network_state state)
{
int b,i,j,k;
for(b = 0; b < l.batch; ++b){
for(k = 0; k < l.c; ++k){
for(j = 0; j < l.h; ++j){
for(i = 0; i < l.w; ++i){
int in_index = i + l.w*(j + l.h*(k + l.c*b));
int c2 = k % l.out_c;
int offset = k / l.out_c;
int w2 = i*l.stride + offset % l.stride;
int h2 = j*l.stride + offset / l.stride;
int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
l.output[out_index] = state.input[in_index];
}
}
}
}
}
void backward_reorg_layer(const layer l, network_state state)
{
int b,i,j,k;
for(b = 0; b < l.batch; ++b){
for(k = 0; k < l.c; ++k){
for(j = 0; j < l.h; ++j){
for(i = 0; i < l.w; ++i){
int in_index = i + l.w*(j + l.h*(k + l.c*b));
int c2 = k % l.out_c;
int offset = k / l.out_c;
int w2 = i*l.stride + offset % l.stride;
int h2 = j*l.stride + offset / l.stride;
int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
state.delta[in_index] = l.delta[out_index];
}
}
}
}
}
#ifdef GPU
void forward_reorg_layer_gpu(layer l, network_state state)
{
reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu);
}
void backward_reorg_layer_gpu(layer l, network_state state)
{
reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
}
#endif