darknet/src/darknet.c
2015-02-06 18:53:53 -08:00

810 lines
26 KiB
C

#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "network.h"
#include "image.h"
#include "parser.h"
#include "data.h"
#include "matrix.h"
#include "utils.h"
#include "blas.h"
#include "matrix.h"
#include "server.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#define _GNU_SOURCE
#include <fenv.h>
void test_load()
{
image dog = load_image("dog.jpg", 300, 400);
show_image(dog, "Test Load");
show_image_layers(dog, "Test Load");
}
void test_parser()
{
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
save_network(net, "cfg/trained_imagenet_smaller.cfg");
}
#define AMNT 3
void draw_detection(image im, float *box, int side)
{
int j;
int r, c;
float amount[AMNT] = {0};
for(r = 0; r < side*side; ++r){
float val = box[r*5];
for(j = 0; j < AMNT; ++j){
if(val > amount[j]) {
float swap = val;
val = amount[j];
amount[j] = swap;
}
}
}
float smallest = amount[AMNT-1];
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * 5;
printf("Prob: %f\n", box[j]);
if(box[j] >= smallest){
int d = im.w/side;
int y = r*d+box[j+1]*d;
int x = c*d+box[j+2]*d;
int h = box[j+3]*256;
int w = box[j+4]*256;
//printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
//printf("%d %d %d %d\n", x, y, w, h);
//printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
}
}
}
show_image(im, "box");
cvWaitKey(0);
}
void train_detection_net(char *cfgfile)
{
float avg_loss = 1;
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
network net = parse_network_cfg(cfgfile);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
srand(time(0));
//srand(23410);
int i = 0;
list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
data train, buffer;
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
clock_t time;
while(1){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
//data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
/*
image im = float_to_image(224, 224, 3, train.X.vals[923]);
draw_detection(im, train.y.vals[923], 7);
*/
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
save_network(net, buff);
}
free_data(train);
}
}
void validate_detection_net(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
int i = 0;
int splits = 50;
int num = (i+1)*m/splits - i*m/splits;
fprintf(stderr, "%d\n", m);
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
clock_t time;
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
normalize_data_rows(val);
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
matrix pred = network_predict_data(net, val);
int j, k;
for(j = 0; j < pred.rows; ++j){
for(k = 0; k < pred.cols; k += 5){
if (pred.vals[j][k] > .005){
int index = k/5;
int r = index/7;
int c = index%7;
float y = (32.*(r + pred.vals[j][k+1]))/224.;
float x = (32.*(c + pred.vals[j][k+2]))/224.;
float h = (256.*(pred.vals[j][k+3]))/224.;
float w = (256.*(pred.vals[j][k+4]))/224.;
printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
}
}
}
time=clock();
free_data(val);
}
}
/*
void train_imagenet_distributed(char *address)
{
float avg_loss = 1;
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_learning_network(&net, 0, 1, 0);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch;
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
data train, buffer;
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
while(1){
i += 1;
time=clock();
client_update(net, address);
printf("Updated: %lf seconds\n", sec(clock()-time));
time=clock();
pthread_join(load_thread, 0);
train = buffer;
normalize_data_rows(train);
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
free_data(train);
}
}
*/
char *basename(char *cfgfile)
{
char *c = cfgfile;
char *next;
while((next = strchr(c, '/')))
{
c = next+1;
}
c = copy_string(c);
next = strchr(c, '_');
if (next) *next = 0;
next = strchr(c, '.');
if (next) *next = 0;
return c;
}
void train_imagenet(char *cfgfile, char *weightfile)
{
float avg_loss = -1;
srand(time(0));
char *base = basename(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
//test_learn_bias(*(convolutional_layer *)net.layers[1]);
//set_learning_network(&net, net.learning_rate, 0, net.decay);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = net.seen/imgs;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
pthread_t load_thread;
data train;
data buffer;
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
while(1){
++i;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
}
}
void validate_imagenet(char *filename, char *weightfile)
{
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
float avg_acc = 0;
float avg_top5 = 0;
int splits = 50;
int num = (i+1)*m/splits - i*m/splits;
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
float *acc = network_accuracies(net, val);
avg_acc += acc[0];
avg_top5 += acc[1];
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
free_data(val);
}
}
void test_detection(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char filename[256];
while(1){
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 224, 224);
z_normalize_image(im);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
draw_detection(im, predictions, 7);
free_image(im);
}
}
void test_init(char *cfgfile)
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char *filename = "data/test.jpg";
image im = load_image_color(filename, 256, 256);
//z_normalize_image(im);
translate_image(im, -128);
scale_image(im, 1/128.);
float *X = im.data;
forward_network(net, X, 0, 1);
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
image output = get_convolutional_image(layer);
int size = output.h*output.w*output.c;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
int size = layer.outputs;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
}
}
free_image(im);
}
void test_dog(char *cfgfile)
{
image im = load_image_color("data/dog.jpg", 256, 256);
translate_image(im, -128);
print_image(im);
float *X = im.data;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
network_predict(net, X);
image crop = get_network_image_layer(net, 0);
show_image(crop, "cropped");
print_image(crop);
show_image(im, "orig");
float * inter = get_network_output(net);
pm(1000, 1, inter);
cvWaitKey(0);
}
void test_imagenet(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
//imgs=1;
srand(2222222);
int i = 0;
char **names = get_labels("cfg/shortnames.txt");
clock_t time;
char filename[256];
int indexes[10];
while(1){
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 256, 256);
translate_image(im, -128);
scale_image(im, 1/128.);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, 10, indexes);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
for(i = 0; i < 10; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
}
}
void test_visualize(char *filename)
{
network net = parse_network_cfg(filename);
visualize_network(net);
cvWaitKey(0);
}
void test_cifar10(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
clock_t start = clock(), end;
float test_acc = network_accuracy_multi(net, test, 10);
end = clock();
printf("%f in %f Sec\n", test_acc, sec(end-start));
//visualize_network(net);
//cvWaitKey(0);
}
void train_cifar10(char *cfgfile)
{
srand(555555);
srand(time(0));
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
int count = 0;
int iters = 50000/net.batch;
data train = load_all_cifar10();
while(++count <= 10000){
clock_t time = clock();
float loss = train_network_sgd(net, train, iters);
if(count%10 == 0){
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
save_network(net, buff);
}else{
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
}
}
free_data(train);
}
void compare_nist(char *p1,char *p2)
{
srand(222222);
network n1 = parse_network_cfg(p1);
network n2 = parse_network_cfg(p2);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
compare_networks(n1, n2, test);
}
void test_nist(char *path)
{
srand(222222);
network net = parse_network_cfg(path);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
clock_t start = clock(), end;
float test_acc = network_accuracy(net, test);
end = clock();
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
void train_nist(char *cfgfile)
{
srand(222222);
// srand(time(0));
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
network net = parse_network_cfg(cfgfile);
int count = 0;
int iters = 6000/net.batch + 1;
while(++count <= 100){
clock_t start = clock(), end;
normalize_data_rows(train);
normalize_data_rows(test);
float loss = train_network_sgd(net, train, iters);
float test_acc = 0;
if(count%1 == 0) test_acc = network_accuracy(net, test);
end = clock();
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
free_data(train);
free_data(test);
char buff[256];
sprintf(buff, "%s.trained", cfgfile);
save_network(net, buff);
}
/*
void train_nist_distributed(char *address)
{
srand(time(0));
network net = parse_network_cfg("cfg/nist.client");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
//normalize_data_rows(test);
int count = 0;
int iters = 50000/net.batch;
iters = 1000/net.batch + 1;
while(++count <= 2000){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
client_update(net, address);
end = clock();
//float test_acc = network_accuracy_gpu(net, test);
//float test_acc = 0;
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
}
}
*/
void test_ensemble()
{
int i;
srand(888888);
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
normalize_data_rows(d);
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
normalize_data_rows(test);
data train = d;
// data *split = split_data(d, 1, 10);
// data train = split[0];
// data test = split[1];
matrix prediction = make_matrix(test.y.rows, test.y.cols);
int n = 30;
for(i = 0; i < n; ++i){
int count = 0;
float lr = .0005;
float momentum = .9;
float decay = .01;
network net = parse_network_cfg("nist.cfg");
while(++count <= 15){
float acc = train_network_sgd(net, train, train.X.rows);
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
lr /= 2;
}
matrix partial = network_predict_data(net, test);
float acc = matrix_topk_accuracy(test.y, partial,1);
printf("Model Accuracy: %lf\n", acc);
matrix_add_matrix(partial, prediction);
acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Current Ensemble Accuracy: %lf\n", acc);
free_matrix(partial);
}
float acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Full Ensemble Accuracy: %lf\n", acc);
}
void visualize_cat()
{
network net = parse_network_cfg("cfg/voc_imagenet.cfg");
image im = load_image_color("data/cat.png", 0, 0);
printf("Processing %dx%d image\n", im.h, im.w);
resize_network(net, im.h, im.w, im.c);
forward_network(net, im.data, 0, 0);
visualize_network(net);
cvWaitKey(0);
}
#ifdef GPU
void test_convolutional_layer()
{
network net = parse_network_cfg("cfg/nist_conv.cfg");
int size = get_network_input_size(net);
float *in = calloc(size, sizeof(float));
int i;
for(i = 0; i < size; ++i) in[i] = rand_normal();
convolutional_layer layer = *(convolutional_layer *)net.layers[0];
int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch;
cuda_compare(layer.output_gpu, layer.output, out_size, "nothing");
cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases");
cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters");
bias_output(layer);
bias_output_gpu(layer);
cuda_compare(layer.output_gpu, layer.output, out_size, "biased output");
}
#endif
void test_correct_nist()
{
network net = parse_network_cfg("cfg/nist_conv.cfg");
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
normalize_data_rows(test);
int count = 0;
int iters = 1000/net.batch;
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_gpu.cfg");
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_cpu.cfg");
}
void test_correct_alexnet()
{
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
int count = 0;
network net;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
int imgs = net.batch;
count = 0;
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
}
/*
void run_server()
{
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_batch_network(&net, 1);
server_update(net);
}
void test_client()
{
network net = parse_network_cfg("cfg/alexnet.client");
clock_t time=clock();
client_update(net, "localhost");
printf("1\n");
client_update(net, "localhost");
printf("2\n");
client_update(net, "localhost");
printf("3\n");
printf("Transfered: %lf seconds\n", sec(clock()-time));
}
*/
void del_arg(int argc, char **argv, int index)
{
int i;
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
argv[i] = 0;
}
int find_arg(int argc, char* argv[], char *arg)
{
int i;
for(i = 0; i < argc; ++i) {
if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)) {
del_arg(argc, argv, i);
return 1;
}
}
return 0;
}
int find_int_arg(int argc, char **argv, char *arg, int def)
{
int i;
for(i = 0; i < argc-1; ++i){
if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)){
def = atoi(argv[i+1]);
del_arg(argc, argv, i);
del_arg(argc, argv, i);
break;
}
}
return def;
}
void scale_rate(char *filename, float scale)
{
// Ready for some weird shit??
FILE *fp = fopen(filename, "r+b");
if(!fp) file_error(filename);
float rate = 0;
fread(&rate, sizeof(float), 1, fp);
printf("Scaling learning rate from %f to %f\n", rate, rate*scale);
rate = rate*scale;
fseek(fp, 0, SEEK_SET);
fwrite(&rate, sizeof(float), 1, fp);
fclose(fp);
}
int main(int argc, char **argv)
{
//test_convolutional_layer();
if(argc < 2){
fprintf(stderr, "usage: %s <function>\n", argv[0]);
return 0;
}
gpu_index = find_int_arg(argc, argv, "-i", 0);
if(find_arg(argc, argv, "-nogpu")) gpu_index = -1;
#ifndef GPU
gpu_index = -1;
#else
if(gpu_index >= 0){
cudaSetDevice(gpu_index);
}
#endif
if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
//else if(0==strcmp(argv[1], "server")) run_server();
#ifdef GPU
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
#endif
else if(argc < 3){
fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
return 0;
}
else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]);
else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]);
else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
//else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
else if(argc < 4){
fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
return 0;
}
else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3]));
fprintf(stderr, "Success!\n");
return 0;
}