mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
128 lines
3.8 KiB
C
128 lines
3.8 KiB
C
#include "maxpool_layer.h"
|
|
#include "cuda.h"
|
|
#include <stdio.h>
|
|
|
|
image get_maxpool_image(maxpool_layer l)
|
|
{
|
|
int h = l.out_h;
|
|
int w = l.out_w;
|
|
int c = l.c;
|
|
return float_to_image(w,h,c,l.output);
|
|
}
|
|
|
|
image get_maxpool_delta(maxpool_layer l)
|
|
{
|
|
int h = l.out_h;
|
|
int w = l.out_w;
|
|
int c = l.c;
|
|
return float_to_image(w,h,c,l.delta);
|
|
}
|
|
|
|
maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int stride, int padding)
|
|
{
|
|
maxpool_layer l = {0};
|
|
l.type = MAXPOOL;
|
|
l.batch = batch;
|
|
l.h = h;
|
|
l.w = w;
|
|
l.c = c;
|
|
l.pad = padding;
|
|
l.out_w = (w + 2*padding)/stride;
|
|
l.out_h = (h + 2*padding)/stride;
|
|
l.out_c = c;
|
|
l.outputs = l.out_h * l.out_w * l.out_c;
|
|
l.inputs = h*w*c;
|
|
l.size = size;
|
|
l.stride = stride;
|
|
int output_size = l.out_h * l.out_w * l.out_c * batch;
|
|
l.indexes = calloc(output_size, sizeof(int));
|
|
l.output = calloc(output_size, sizeof(float));
|
|
l.delta = calloc(output_size, sizeof(float));
|
|
l.forward = forward_maxpool_layer;
|
|
l.backward = backward_maxpool_layer;
|
|
#ifdef GPU
|
|
l.forward_gpu = forward_maxpool_layer_gpu;
|
|
l.backward_gpu = backward_maxpool_layer_gpu;
|
|
l.indexes_gpu = cuda_make_int_array(0, output_size);
|
|
l.output_gpu = cuda_make_array(l.output, output_size);
|
|
l.delta_gpu = cuda_make_array(l.delta, output_size);
|
|
#endif
|
|
fprintf(stderr, "max %d x %d / %d %4d x%4d x%4d -> %4d x%4d x%4d\n", size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
|
|
return l;
|
|
}
|
|
|
|
void resize_maxpool_layer(maxpool_layer *l, int w, int h)
|
|
{
|
|
l->h = h;
|
|
l->w = w;
|
|
l->inputs = h*w*l->c;
|
|
|
|
l->out_w = (w + 2*l->pad)/l->stride;
|
|
l->out_h = (h + 2*l->pad)/l->stride;
|
|
l->outputs = l->out_w * l->out_h * l->c;
|
|
int output_size = l->outputs * l->batch;
|
|
|
|
l->indexes = realloc(l->indexes, output_size * sizeof(int));
|
|
l->output = realloc(l->output, output_size * sizeof(float));
|
|
l->delta = realloc(l->delta, output_size * sizeof(float));
|
|
|
|
#ifdef GPU
|
|
cuda_free((float *)l->indexes_gpu);
|
|
cuda_free(l->output_gpu);
|
|
cuda_free(l->delta_gpu);
|
|
l->indexes_gpu = cuda_make_int_array(0, output_size);
|
|
l->output_gpu = cuda_make_array(l->output, output_size);
|
|
l->delta_gpu = cuda_make_array(l->delta, output_size);
|
|
#endif
|
|
}
|
|
|
|
void forward_maxpool_layer(const maxpool_layer l, network net)
|
|
{
|
|
int b,i,j,k,m,n;
|
|
int w_offset = -l.pad;
|
|
int h_offset = -l.pad;
|
|
|
|
int h = l.out_h;
|
|
int w = l.out_w;
|
|
int c = l.c;
|
|
|
|
for(b = 0; b < l.batch; ++b){
|
|
for(k = 0; k < c; ++k){
|
|
for(i = 0; i < h; ++i){
|
|
for(j = 0; j < w; ++j){
|
|
int out_index = j + w*(i + h*(k + c*b));
|
|
float max = -FLT_MAX;
|
|
int max_i = -1;
|
|
for(n = 0; n < l.size; ++n){
|
|
for(m = 0; m < l.size; ++m){
|
|
int cur_h = h_offset + i*l.stride + n;
|
|
int cur_w = w_offset + j*l.stride + m;
|
|
int index = cur_w + l.w*(cur_h + l.h*(k + b*l.c));
|
|
int valid = (cur_h >= 0 && cur_h < l.h &&
|
|
cur_w >= 0 && cur_w < l.w);
|
|
float val = (valid != 0) ? net.input[index] : -FLT_MAX;
|
|
max_i = (val > max) ? index : max_i;
|
|
max = (val > max) ? val : max;
|
|
}
|
|
}
|
|
l.output[out_index] = max;
|
|
l.indexes[out_index] = max_i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void backward_maxpool_layer(const maxpool_layer l, network net)
|
|
{
|
|
int i;
|
|
int h = l.out_h;
|
|
int w = l.out_w;
|
|
int c = l.c;
|
|
for(i = 0; i < h*w*c*l.batch; ++i){
|
|
int index = l.indexes[i];
|
|
net.delta[index] += l.delta[i];
|
|
}
|
|
}
|
|
|