mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
1241 lines
33 KiB
C
1241 lines
33 KiB
C
#include "data.h"
|
|
#include "utils.h"
|
|
#include "image.h"
|
|
#include "cuda.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
list *get_paths(char *filename)
|
|
{
|
|
char *path;
|
|
FILE *file = fopen(filename, "r");
|
|
if(!file) file_error(filename);
|
|
list *lines = make_list();
|
|
while((path=fgetl(file))){
|
|
list_insert(lines, path);
|
|
}
|
|
fclose(file);
|
|
return lines;
|
|
}
|
|
|
|
/*
|
|
char **get_random_paths_indexes(char **paths, int n, int m, int *indexes)
|
|
{
|
|
char **random_paths = calloc(n, sizeof(char*));
|
|
int i;
|
|
pthread_mutex_lock(&mutex);
|
|
for(i = 0; i < n; ++i){
|
|
int index = rand()%m;
|
|
indexes[i] = index;
|
|
random_paths[i] = paths[index];
|
|
if(i == 0) printf("%s\n", paths[index]);
|
|
}
|
|
pthread_mutex_unlock(&mutex);
|
|
return random_paths;
|
|
}
|
|
*/
|
|
|
|
char **get_random_paths(char **paths, int n, int m)
|
|
{
|
|
char **random_paths = calloc(n, sizeof(char*));
|
|
int i;
|
|
pthread_mutex_lock(&mutex);
|
|
for(i = 0; i < n; ++i){
|
|
int index = rand()%m;
|
|
random_paths[i] = paths[index];
|
|
//if(i == 0) printf("%s\n", paths[index]);
|
|
}
|
|
pthread_mutex_unlock(&mutex);
|
|
return random_paths;
|
|
}
|
|
|
|
char **find_replace_paths(char **paths, int n, char *find, char *replace)
|
|
{
|
|
char **replace_paths = calloc(n, sizeof(char*));
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
char replaced[4096];
|
|
find_replace(paths[i], find, replace, replaced);
|
|
replace_paths[i] = copy_string(replaced);
|
|
}
|
|
return replace_paths;
|
|
}
|
|
|
|
matrix load_image_paths_gray(char **paths, int n, int w, int h)
|
|
{
|
|
int i;
|
|
matrix X;
|
|
X.rows = n;
|
|
X.vals = calloc(X.rows, sizeof(float*));
|
|
X.cols = 0;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
image im = load_image(paths[i], w, h, 3);
|
|
|
|
image gray = grayscale_image(im);
|
|
free_image(im);
|
|
im = gray;
|
|
|
|
X.vals[i] = im.data;
|
|
X.cols = im.h*im.w*im.c;
|
|
}
|
|
return X;
|
|
}
|
|
|
|
matrix load_image_paths(char **paths, int n, int w, int h)
|
|
{
|
|
int i;
|
|
matrix X;
|
|
X.rows = n;
|
|
X.vals = calloc(X.rows, sizeof(float*));
|
|
X.cols = 0;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
image im = load_image_color(paths[i], w, h);
|
|
X.vals[i] = im.data;
|
|
X.cols = im.h*im.w*im.c;
|
|
}
|
|
return X;
|
|
}
|
|
|
|
matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
|
|
{
|
|
int i;
|
|
matrix X;
|
|
X.rows = n;
|
|
X.vals = calloc(X.rows, sizeof(float*));
|
|
X.cols = 0;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
image im = load_image_color(paths[i], 0, 0);
|
|
image crop = random_augment_image(im, angle, aspect, min, max, size);
|
|
int flip = rand()%2;
|
|
if (flip) flip_image(crop);
|
|
random_distort_image(crop, hue, saturation, exposure);
|
|
|
|
/*
|
|
show_image(im, "orig");
|
|
show_image(crop, "crop");
|
|
cvWaitKey(0);
|
|
*/
|
|
free_image(im);
|
|
X.vals[i] = crop.data;
|
|
X.cols = crop.h*crop.w*crop.c;
|
|
}
|
|
return X;
|
|
}
|
|
|
|
|
|
box_label *read_boxes(char *filename, int *n)
|
|
{
|
|
box_label *boxes = calloc(1, sizeof(box_label));
|
|
FILE *file = fopen(filename, "r");
|
|
if(!file) file_error(filename);
|
|
float x, y, h, w;
|
|
int id;
|
|
int count = 0;
|
|
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
|
|
boxes = realloc(boxes, (count+1)*sizeof(box_label));
|
|
boxes[count].id = id;
|
|
boxes[count].x = x;
|
|
boxes[count].y = y;
|
|
boxes[count].h = h;
|
|
boxes[count].w = w;
|
|
boxes[count].left = x - w/2;
|
|
boxes[count].right = x + w/2;
|
|
boxes[count].top = y - h/2;
|
|
boxes[count].bottom = y + h/2;
|
|
++count;
|
|
}
|
|
fclose(file);
|
|
*n = count;
|
|
return boxes;
|
|
}
|
|
|
|
void randomize_boxes(box_label *b, int n)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
box_label swap = b[i];
|
|
int index = rand()%n;
|
|
b[i] = b[index];
|
|
b[index] = swap;
|
|
}
|
|
}
|
|
|
|
void correct_boxes(box_label *boxes, int n, float dx, float dy, float sx, float sy, int flip)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
if(boxes[i].x == 0 && boxes[i].y == 0) {
|
|
boxes[i].x = 999999;
|
|
boxes[i].y = 999999;
|
|
boxes[i].w = 999999;
|
|
boxes[i].h = 999999;
|
|
continue;
|
|
}
|
|
boxes[i].left = boxes[i].left * sx - dx;
|
|
boxes[i].right = boxes[i].right * sx - dx;
|
|
boxes[i].top = boxes[i].top * sy - dy;
|
|
boxes[i].bottom = boxes[i].bottom* sy - dy;
|
|
|
|
if(flip){
|
|
float swap = boxes[i].left;
|
|
boxes[i].left = 1. - boxes[i].right;
|
|
boxes[i].right = 1. - swap;
|
|
}
|
|
|
|
boxes[i].left = constrain(0, 1, boxes[i].left);
|
|
boxes[i].right = constrain(0, 1, boxes[i].right);
|
|
boxes[i].top = constrain(0, 1, boxes[i].top);
|
|
boxes[i].bottom = constrain(0, 1, boxes[i].bottom);
|
|
|
|
boxes[i].x = (boxes[i].left+boxes[i].right)/2;
|
|
boxes[i].y = (boxes[i].top+boxes[i].bottom)/2;
|
|
boxes[i].w = (boxes[i].right - boxes[i].left);
|
|
boxes[i].h = (boxes[i].bottom - boxes[i].top);
|
|
|
|
boxes[i].w = constrain(0, 1, boxes[i].w);
|
|
boxes[i].h = constrain(0, 1, boxes[i].h);
|
|
}
|
|
}
|
|
|
|
void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
|
|
{
|
|
char labelpath[4096];
|
|
find_replace(path, "images", "labels", labelpath);
|
|
find_replace(labelpath, "JPEGImages", "labels", labelpath);
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath);
|
|
find_replace(labelpath, ".JPG", ".txt", labelpath);
|
|
find_replace(labelpath, ".JPEG", ".txt", labelpath);
|
|
|
|
int count = 0;
|
|
box_label *boxes = read_boxes(labelpath, &count);
|
|
randomize_boxes(boxes, count);
|
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
|
|
float x,y,w,h;
|
|
int id;
|
|
int i;
|
|
|
|
for (i = 0; i < count && i < 30; ++i) {
|
|
x = boxes[i].x;
|
|
y = boxes[i].y;
|
|
w = boxes[i].w;
|
|
h = boxes[i].h;
|
|
id = boxes[i].id;
|
|
|
|
if (w < .0 || h < .0) continue;
|
|
|
|
int index = (4+classes) * i;
|
|
|
|
truth[index++] = x;
|
|
truth[index++] = y;
|
|
truth[index++] = w;
|
|
truth[index++] = h;
|
|
|
|
if (id < classes) truth[index+id] = 1;
|
|
}
|
|
free(boxes);
|
|
}
|
|
|
|
void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy)
|
|
{
|
|
char labelpath[4096];
|
|
find_replace(path, "images", "labels", labelpath);
|
|
find_replace(labelpath, "JPEGImages", "labels", labelpath);
|
|
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath);
|
|
find_replace(labelpath, ".png", ".txt", labelpath);
|
|
find_replace(labelpath, ".JPG", ".txt", labelpath);
|
|
find_replace(labelpath, ".JPEG", ".txt", labelpath);
|
|
int count = 0;
|
|
box_label *boxes = read_boxes(labelpath, &count);
|
|
randomize_boxes(boxes, count);
|
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
|
|
float x,y,w,h;
|
|
int id;
|
|
int i;
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
x = boxes[i].x;
|
|
y = boxes[i].y;
|
|
w = boxes[i].w;
|
|
h = boxes[i].h;
|
|
id = boxes[i].id;
|
|
|
|
if (w < .005 || h < .005) continue;
|
|
|
|
int col = (int)(x*num_boxes);
|
|
int row = (int)(y*num_boxes);
|
|
|
|
x = x*num_boxes - col;
|
|
y = y*num_boxes - row;
|
|
|
|
int index = (col+row*num_boxes)*(5+classes);
|
|
if (truth[index]) continue;
|
|
truth[index++] = 1;
|
|
|
|
if (id < classes) truth[index+id] = 1;
|
|
index += classes;
|
|
|
|
truth[index++] = x;
|
|
truth[index++] = y;
|
|
truth[index++] = w;
|
|
truth[index++] = h;
|
|
}
|
|
free(boxes);
|
|
}
|
|
|
|
void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
|
|
{
|
|
char labelpath[4096];
|
|
find_replace(path, "images", "labels", labelpath);
|
|
find_replace(labelpath, "JPEGImages", "labels", labelpath);
|
|
|
|
find_replace(labelpath, "raw", "labels", labelpath);
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath);
|
|
find_replace(labelpath, ".png", ".txt", labelpath);
|
|
find_replace(labelpath, ".JPG", ".txt", labelpath);
|
|
find_replace(labelpath, ".JPEG", ".txt", labelpath);
|
|
int count = 0;
|
|
box_label *boxes = read_boxes(labelpath, &count);
|
|
randomize_boxes(boxes, count);
|
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
|
|
if(count > num_boxes) count = num_boxes;
|
|
float x,y,w,h;
|
|
int id;
|
|
int i;
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
x = boxes[i].x;
|
|
y = boxes[i].y;
|
|
w = boxes[i].w;
|
|
h = boxes[i].h;
|
|
id = boxes[i].id;
|
|
|
|
if ((w < .001 || h < .001)) continue;
|
|
|
|
truth[i*5+0] = x;
|
|
truth[i*5+1] = y;
|
|
truth[i*5+2] = w;
|
|
truth[i*5+3] = h;
|
|
truth[i*5+4] = id;
|
|
}
|
|
free(boxes);
|
|
}
|
|
|
|
#define NUMCHARS 37
|
|
|
|
void print_letters(float *pred, int n)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
int index = max_index(pred+i*NUMCHARS, NUMCHARS);
|
|
printf("%c", int_to_alphanum(index));
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
void fill_truth_captcha(char *path, int n, float *truth)
|
|
{
|
|
char *begin = strrchr(path, '/');
|
|
++begin;
|
|
int i;
|
|
for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){
|
|
int index = alphanum_to_int(begin[i]);
|
|
if(index > 35) printf("Bad %c\n", begin[i]);
|
|
truth[i*NUMCHARS+index] = 1;
|
|
}
|
|
for(;i < n; ++i){
|
|
truth[i*NUMCHARS + NUMCHARS-1] = 1;
|
|
}
|
|
}
|
|
|
|
data load_data_captcha(char **paths, int n, int m, int k, int w, int h)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.X = load_image_paths(paths, n, w, h);
|
|
d.y = make_matrix(n, k*NUMCHARS);
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
fill_truth_captcha(paths[i], k, d.y.vals[i]);
|
|
}
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
data load_data_captcha_encode(char **paths, int n, int m, int w, int h)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.X = load_image_paths(paths, n, w, h);
|
|
d.X.cols = 17100;
|
|
d.y = d.X;
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
void fill_truth(char *path, char **labels, int k, float *truth)
|
|
{
|
|
int i;
|
|
memset(truth, 0, k*sizeof(float));
|
|
int count = 0;
|
|
for(i = 0; i < k; ++i){
|
|
if(strstr(path, labels[i])){
|
|
truth[i] = 1;
|
|
++count;
|
|
}
|
|
}
|
|
if(count != 1 && (k != 1 || count != 0)) printf("Too many or too few labels: %d, %s\n", count, path);
|
|
}
|
|
|
|
void fill_hierarchy(float *truth, int k, tree *hierarchy)
|
|
{
|
|
int j;
|
|
for(j = 0; j < k; ++j){
|
|
if(truth[j]){
|
|
int parent = hierarchy->parent[j];
|
|
while(parent >= 0){
|
|
truth[parent] = 1;
|
|
parent = hierarchy->parent[parent];
|
|
}
|
|
}
|
|
}
|
|
int i;
|
|
int count = 0;
|
|
for(j = 0; j < hierarchy->groups; ++j){
|
|
//printf("%d\n", count);
|
|
int mask = 1;
|
|
for(i = 0; i < hierarchy->group_size[j]; ++i){
|
|
if(truth[count + i]){
|
|
mask = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (mask) {
|
|
for(i = 0; i < hierarchy->group_size[j]; ++i){
|
|
truth[count + i] = SECRET_NUM;
|
|
}
|
|
}
|
|
count += hierarchy->group_size[j];
|
|
}
|
|
}
|
|
|
|
matrix load_regression_labels_paths(char **paths, int n)
|
|
{
|
|
matrix y = make_matrix(n, 1);
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
char labelpath[4096];
|
|
find_replace(paths[i], "images", "targets", labelpath);
|
|
find_replace(labelpath, "JPEGImages", "targets", labelpath);
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath);
|
|
find_replace(labelpath, ".png", ".txt", labelpath);
|
|
|
|
FILE *file = fopen(labelpath, "r");
|
|
fscanf(file, "%f", &(y.vals[i][0]));
|
|
fclose(file);
|
|
}
|
|
return y;
|
|
}
|
|
|
|
matrix load_labels_paths(char **paths, int n, char **labels, int k, tree *hierarchy)
|
|
{
|
|
matrix y = make_matrix(n, k);
|
|
int i;
|
|
for(i = 0; i < n && labels; ++i){
|
|
fill_truth(paths[i], labels, k, y.vals[i]);
|
|
if(hierarchy){
|
|
fill_hierarchy(y.vals[i], k, hierarchy);
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
|
|
matrix load_tags_paths(char **paths, int n, int k)
|
|
{
|
|
matrix y = make_matrix(n, k);
|
|
int i;
|
|
int count = 0;
|
|
for(i = 0; i < n; ++i){
|
|
char label[4096];
|
|
find_replace(paths[i], "imgs", "labels", label);
|
|
find_replace(label, "_iconl.jpeg", ".txt", label);
|
|
FILE *file = fopen(label, "r");
|
|
if(!file){
|
|
find_replace(label, "labels", "labels2", label);
|
|
file = fopen(label, "r");
|
|
if(!file) continue;
|
|
}
|
|
++count;
|
|
int tag;
|
|
while(fscanf(file, "%d", &tag) == 1){
|
|
if(tag < k){
|
|
y.vals[i][tag] = 1;
|
|
}
|
|
}
|
|
fclose(file);
|
|
}
|
|
printf("%d/%d\n", count, n);
|
|
return y;
|
|
}
|
|
|
|
char **get_labels(char *filename)
|
|
{
|
|
list *plist = get_paths(filename);
|
|
char **labels = (char **)list_to_array(plist);
|
|
free_list(plist);
|
|
return labels;
|
|
}
|
|
|
|
void free_data(data d)
|
|
{
|
|
if(!d.shallow){
|
|
free_matrix(d.X);
|
|
free_matrix(d.y);
|
|
}else{
|
|
free(d.X.vals);
|
|
free(d.y.vals);
|
|
}
|
|
}
|
|
|
|
data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter, float hue, float saturation, float exposure)
|
|
{
|
|
char **random_paths = get_random_paths(paths, n, m);
|
|
int i;
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
|
|
d.X.rows = n;
|
|
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
|
d.X.cols = h*w*3;
|
|
|
|
|
|
int k = size*size*(5+classes);
|
|
d.y = make_matrix(n, k);
|
|
for(i = 0; i < n; ++i){
|
|
image orig = load_image_color(random_paths[i], 0, 0);
|
|
|
|
int oh = orig.h;
|
|
int ow = orig.w;
|
|
|
|
int dw = (ow*jitter);
|
|
int dh = (oh*jitter);
|
|
|
|
int pleft = rand_uniform(-dw, dw);
|
|
int pright = rand_uniform(-dw, dw);
|
|
int ptop = rand_uniform(-dh, dh);
|
|
int pbot = rand_uniform(-dh, dh);
|
|
|
|
int swidth = ow - pleft - pright;
|
|
int sheight = oh - ptop - pbot;
|
|
|
|
float sx = (float)swidth / ow;
|
|
float sy = (float)sheight / oh;
|
|
|
|
int flip = rand()%2;
|
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
|
|
|
|
float dx = ((float)pleft/ow)/sx;
|
|
float dy = ((float)ptop /oh)/sy;
|
|
|
|
image sized = resize_image(cropped, w, h);
|
|
if(flip) flip_image(sized);
|
|
random_distort_image(sized, hue, saturation, exposure);
|
|
d.X.vals[i] = sized.data;
|
|
|
|
fill_truth_region(random_paths[i], d.y.vals[i], classes, size, flip, dx, dy, 1./sx, 1./sy);
|
|
|
|
free_image(orig);
|
|
free_image(cropped);
|
|
}
|
|
free(random_paths);
|
|
return d;
|
|
}
|
|
|
|
data load_data_compare(int n, char **paths, int m, int classes, int w, int h)
|
|
{
|
|
if(m) paths = get_random_paths(paths, 2*n, m);
|
|
int i,j;
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
|
|
d.X.rows = n;
|
|
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
|
d.X.cols = h*w*6;
|
|
|
|
int k = 2*(classes);
|
|
d.y = make_matrix(n, k);
|
|
for(i = 0; i < n; ++i){
|
|
image im1 = load_image_color(paths[i*2], w, h);
|
|
image im2 = load_image_color(paths[i*2+1], w, h);
|
|
|
|
d.X.vals[i] = calloc(d.X.cols, sizeof(float));
|
|
memcpy(d.X.vals[i], im1.data, h*w*3*sizeof(float));
|
|
memcpy(d.X.vals[i] + h*w*3, im2.data, h*w*3*sizeof(float));
|
|
|
|
int id;
|
|
float iou;
|
|
|
|
char imlabel1[4096];
|
|
char imlabel2[4096];
|
|
find_replace(paths[i*2], "imgs", "labels", imlabel1);
|
|
find_replace(imlabel1, "jpg", "txt", imlabel1);
|
|
FILE *fp1 = fopen(imlabel1, "r");
|
|
|
|
while(fscanf(fp1, "%d %f", &id, &iou) == 2){
|
|
if (d.y.vals[i][2*id] < iou) d.y.vals[i][2*id] = iou;
|
|
}
|
|
|
|
find_replace(paths[i*2+1], "imgs", "labels", imlabel2);
|
|
find_replace(imlabel2, "jpg", "txt", imlabel2);
|
|
FILE *fp2 = fopen(imlabel2, "r");
|
|
|
|
while(fscanf(fp2, "%d %f", &id, &iou) == 2){
|
|
if (d.y.vals[i][2*id + 1] < iou) d.y.vals[i][2*id + 1] = iou;
|
|
}
|
|
|
|
for (j = 0; j < classes; ++j){
|
|
if (d.y.vals[i][2*j] > .5 && d.y.vals[i][2*j+1] < .5){
|
|
d.y.vals[i][2*j] = 1;
|
|
d.y.vals[i][2*j+1] = 0;
|
|
} else if (d.y.vals[i][2*j] < .5 && d.y.vals[i][2*j+1] > .5){
|
|
d.y.vals[i][2*j] = 0;
|
|
d.y.vals[i][2*j+1] = 1;
|
|
} else {
|
|
d.y.vals[i][2*j] = SECRET_NUM;
|
|
d.y.vals[i][2*j+1] = SECRET_NUM;
|
|
}
|
|
}
|
|
fclose(fp1);
|
|
fclose(fp2);
|
|
|
|
free_image(im1);
|
|
free_image(im2);
|
|
}
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
data load_data_swag(char **paths, int n, int classes, float jitter)
|
|
{
|
|
int index = rand()%n;
|
|
char *random_path = paths[index];
|
|
|
|
image orig = load_image_color(random_path, 0, 0);
|
|
int h = orig.h;
|
|
int w = orig.w;
|
|
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.w = w;
|
|
d.h = h;
|
|
|
|
d.X.rows = 1;
|
|
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
|
d.X.cols = h*w*3;
|
|
|
|
int k = (4+classes)*30;
|
|
d.y = make_matrix(1, k);
|
|
|
|
int dw = w*jitter;
|
|
int dh = h*jitter;
|
|
|
|
int pleft = rand_uniform(-dw, dw);
|
|
int pright = rand_uniform(-dw, dw);
|
|
int ptop = rand_uniform(-dh, dh);
|
|
int pbot = rand_uniform(-dh, dh);
|
|
|
|
int swidth = w - pleft - pright;
|
|
int sheight = h - ptop - pbot;
|
|
|
|
float sx = (float)swidth / w;
|
|
float sy = (float)sheight / h;
|
|
|
|
int flip = rand()%2;
|
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
|
|
|
|
float dx = ((float)pleft/w)/sx;
|
|
float dy = ((float)ptop /h)/sy;
|
|
|
|
image sized = resize_image(cropped, w, h);
|
|
if(flip) flip_image(sized);
|
|
d.X.vals[0] = sized.data;
|
|
|
|
fill_truth_swag(random_path, d.y.vals[0], classes, flip, dx, dy, 1./sx, 1./sy);
|
|
|
|
free_image(orig);
|
|
free_image(cropped);
|
|
|
|
return d;
|
|
}
|
|
|
|
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure)
|
|
{
|
|
char **random_paths = get_random_paths(paths, n, m);
|
|
int i;
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
|
|
d.X.rows = n;
|
|
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
|
d.X.cols = h*w*3;
|
|
|
|
d.y = make_matrix(n, 5*boxes);
|
|
for(i = 0; i < n; ++i){
|
|
image orig = load_image_color(random_paths[i], 0, 0);
|
|
image sized = make_image(w, h, orig.c);
|
|
fill_image(sized, .5);
|
|
|
|
float dw = jitter * orig.w;
|
|
float dh = jitter * orig.h;
|
|
|
|
float new_ar = (orig.w + rand_uniform(-dw, dw)) / (orig.h + rand_uniform(-dh, dh));
|
|
float scale = rand_uniform(.25, 2);
|
|
|
|
float nw, nh;
|
|
|
|
if(new_ar < 1){
|
|
nh = scale * h;
|
|
nw = nh * new_ar;
|
|
} else {
|
|
nw = scale * w;
|
|
nh = nw / new_ar;
|
|
}
|
|
|
|
float dx = rand_uniform(0, w - nw);
|
|
float dy = rand_uniform(0, h - nh);
|
|
|
|
place_image(orig, nw, nh, dx, dy, sized);
|
|
|
|
random_distort_image(sized, hue, saturation, exposure);
|
|
int flip = rand()%2;
|
|
if(flip) flip_image(sized);
|
|
d.X.vals[i] = sized.data;
|
|
|
|
|
|
fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, -dx/w, -dy/h, nw/w, nh/h);
|
|
|
|
free_image(orig);
|
|
}
|
|
free(random_paths);
|
|
return d;
|
|
}
|
|
|
|
void *load_thread(void *ptr)
|
|
{
|
|
//printf("Loading data: %d\n", rand());
|
|
load_args a = *(struct load_args*)ptr;
|
|
if(a.exposure == 0) a.exposure = 1;
|
|
if(a.saturation == 0) a.saturation = 1;
|
|
if(a.aspect == 0) a.aspect = 1;
|
|
|
|
if (a.type == OLD_CLASSIFICATION_DATA){
|
|
*a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
|
|
} else if (a.type == REGRESSION_DATA){
|
|
*a.d = load_data_regression(a.paths, a.n, a.m, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
|
|
} else if (a.type == CLASSIFICATION_DATA){
|
|
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.hierarchy, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
|
|
} else if (a.type == SUPER_DATA){
|
|
*a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale);
|
|
} else if (a.type == WRITING_DATA){
|
|
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
|
|
} else if (a.type == REGION_DATA){
|
|
*a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure);
|
|
} else if (a.type == DETECTION_DATA){
|
|
*a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure);
|
|
} else if (a.type == SWAG_DATA){
|
|
*a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter);
|
|
} else if (a.type == COMPARE_DATA){
|
|
*a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h);
|
|
} else if (a.type == IMAGE_DATA){
|
|
*(a.im) = load_image_color(a.path, 0, 0);
|
|
*(a.resized) = resize_image(*(a.im), a.w, a.h);
|
|
} else if (a.type == LETTERBOX_DATA){
|
|
*(a.im) = load_image_color(a.path, 0, 0);
|
|
*(a.resized) = letterbox_image(*(a.im), a.w, a.h);
|
|
} else if (a.type == TAG_DATA){
|
|
*a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
|
|
}
|
|
free(ptr);
|
|
return 0;
|
|
}
|
|
|
|
pthread_t load_data_in_thread(load_args args)
|
|
{
|
|
pthread_t thread;
|
|
struct load_args *ptr = calloc(1, sizeof(struct load_args));
|
|
*ptr = args;
|
|
if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed");
|
|
return thread;
|
|
}
|
|
|
|
void *load_threads(void *ptr)
|
|
{
|
|
int i;
|
|
load_args args = *(load_args *)ptr;
|
|
if (args.threads == 0) args.threads = 1;
|
|
data *out = args.d;
|
|
int total = args.n;
|
|
free(ptr);
|
|
data *buffers = calloc(args.threads, sizeof(data));
|
|
pthread_t *threads = calloc(args.threads, sizeof(pthread_t));
|
|
for(i = 0; i < args.threads; ++i){
|
|
args.d = buffers + i;
|
|
args.n = (i+1) * total/args.threads - i * total/args.threads;
|
|
threads[i] = load_data_in_thread(args);
|
|
}
|
|
for(i = 0; i < args.threads; ++i){
|
|
pthread_join(threads[i], 0);
|
|
}
|
|
*out = concat_datas(buffers, args.threads);
|
|
out->shallow = 0;
|
|
for(i = 0; i < args.threads; ++i){
|
|
buffers[i].shallow = 1;
|
|
free_data(buffers[i]);
|
|
}
|
|
free(buffers);
|
|
free(threads);
|
|
return 0;
|
|
}
|
|
|
|
pthread_t load_data(load_args args)
|
|
{
|
|
pthread_t thread;
|
|
struct load_args *ptr = calloc(1, sizeof(struct load_args));
|
|
*ptr = args;
|
|
if(pthread_create(&thread, 0, load_threads, ptr)) error("Thread creation failed");
|
|
return thread;
|
|
}
|
|
|
|
data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int out_h)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png");
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.X = load_image_paths(paths, n, w, h);
|
|
d.y = load_image_paths_gray(replace_paths, n, out_w, out_h);
|
|
if(m) free(paths);
|
|
int i;
|
|
for(i = 0; i < n; ++i) free(replace_paths[i]);
|
|
free(replace_paths);
|
|
return d;
|
|
}
|
|
|
|
data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.X = load_image_paths(paths, n, w, h);
|
|
d.y = load_labels_paths(paths, n, labels, k, 0);
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
|
|
{
|
|
data d = {0};
|
|
d.indexes = calloc(n, sizeof(int));
|
|
if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes);
|
|
d.shallow = 0;
|
|
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
|
|
d.y = load_labels_paths(paths, n, labels, k);
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
*/
|
|
|
|
data load_data_super(char **paths, int n, int m, int w, int h, int scale)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
|
|
int i;
|
|
d.X.rows = n;
|
|
d.X.vals = calloc(n, sizeof(float*));
|
|
d.X.cols = w*h*3;
|
|
|
|
d.y.rows = n;
|
|
d.y.vals = calloc(n, sizeof(float*));
|
|
d.y.cols = w*scale * h*scale * 3;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
image im = load_image_color(paths[i], 0, 0);
|
|
image crop = random_crop_image(im, w*scale, h*scale);
|
|
int flip = rand()%2;
|
|
if (flip) flip_image(crop);
|
|
image resize = resize_image(crop, w, h);
|
|
d.X.vals[i] = resize.data;
|
|
d.y.vals[i] = crop.data;
|
|
free_image(im);
|
|
}
|
|
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
data load_data_regression(char **paths, int n, int m, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
|
|
d.y = load_regression_labels_paths(paths, n);
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
data load_data_augment(char **paths, int n, int m, char **labels, int k, tree *hierarchy, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
|
|
d.y = load_labels_paths(paths, n, labels, k, hierarchy);
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
|
|
{
|
|
if(m) paths = get_random_paths(paths, n, m);
|
|
data d = {0};
|
|
d.w = size;
|
|
d.h = size;
|
|
d.shallow = 0;
|
|
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
|
|
d.y = load_tags_paths(paths, n, k);
|
|
if(m) free(paths);
|
|
return d;
|
|
}
|
|
|
|
matrix concat_matrix(matrix m1, matrix m2)
|
|
{
|
|
int i, count = 0;
|
|
matrix m;
|
|
m.cols = m1.cols;
|
|
m.rows = m1.rows+m2.rows;
|
|
m.vals = calloc(m1.rows + m2.rows, sizeof(float*));
|
|
for(i = 0; i < m1.rows; ++i){
|
|
m.vals[count++] = m1.vals[i];
|
|
}
|
|
for(i = 0; i < m2.rows; ++i){
|
|
m.vals[count++] = m2.vals[i];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
data concat_data(data d1, data d2)
|
|
{
|
|
data d = {0};
|
|
d.shallow = 1;
|
|
d.X = concat_matrix(d1.X, d2.X);
|
|
d.y = concat_matrix(d1.y, d2.y);
|
|
return d;
|
|
}
|
|
|
|
data concat_datas(data *d, int n)
|
|
{
|
|
int i;
|
|
data out = {0};
|
|
for(i = 0; i < n; ++i){
|
|
data new = concat_data(d[i], out);
|
|
free_data(out);
|
|
out = new;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
data load_categorical_data_csv(char *filename, int target, int k)
|
|
{
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
matrix X = csv_to_matrix(filename);
|
|
float *truth_1d = pop_column(&X, target);
|
|
float **truth = one_hot_encode(truth_1d, X.rows, k);
|
|
matrix y;
|
|
y.rows = X.rows;
|
|
y.cols = k;
|
|
y.vals = truth;
|
|
d.X = X;
|
|
d.y = y;
|
|
free(truth_1d);
|
|
return d;
|
|
}
|
|
|
|
data load_cifar10_data(char *filename)
|
|
{
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
long i,j;
|
|
matrix X = make_matrix(10000, 3072);
|
|
matrix y = make_matrix(10000, 10);
|
|
d.X = X;
|
|
d.y = y;
|
|
|
|
FILE *fp = fopen(filename, "rb");
|
|
if(!fp) file_error(filename);
|
|
for(i = 0; i < 10000; ++i){
|
|
unsigned char bytes[3073];
|
|
fread(bytes, 1, 3073, fp);
|
|
int class = bytes[0];
|
|
y.vals[i][class] = 1;
|
|
for(j = 0; j < X.cols; ++j){
|
|
X.vals[i][j] = (double)bytes[j+1];
|
|
}
|
|
}
|
|
scale_data_rows(d, 1./255);
|
|
//normalize_data_rows(d);
|
|
fclose(fp);
|
|
return d;
|
|
}
|
|
|
|
void get_random_batch(data d, int n, float *X, float *y)
|
|
{
|
|
int j;
|
|
for(j = 0; j < n; ++j){
|
|
int index = rand()%d.X.rows;
|
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
|
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
|
|
}
|
|
}
|
|
|
|
void get_next_batch(data d, int n, int offset, float *X, float *y)
|
|
{
|
|
int j;
|
|
for(j = 0; j < n; ++j){
|
|
int index = offset + j;
|
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
|
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
|
|
}
|
|
}
|
|
|
|
void smooth_data(data d)
|
|
{
|
|
int i, j;
|
|
float scale = 1. / d.y.cols;
|
|
float eps = .1;
|
|
for(i = 0; i < d.y.rows; ++i){
|
|
for(j = 0; j < d.y.cols; ++j){
|
|
d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
data load_all_cifar10()
|
|
{
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
int i,j,b;
|
|
matrix X = make_matrix(50000, 3072);
|
|
matrix y = make_matrix(50000, 10);
|
|
d.X = X;
|
|
d.y = y;
|
|
|
|
|
|
for(b = 0; b < 5; ++b){
|
|
char buff[256];
|
|
sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1);
|
|
FILE *fp = fopen(buff, "rb");
|
|
if(!fp) file_error(buff);
|
|
for(i = 0; i < 10000; ++i){
|
|
unsigned char bytes[3073];
|
|
fread(bytes, 1, 3073, fp);
|
|
int class = bytes[0];
|
|
y.vals[i+b*10000][class] = 1;
|
|
for(j = 0; j < X.cols; ++j){
|
|
X.vals[i+b*10000][j] = (double)bytes[j+1];
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
//normalize_data_rows(d);
|
|
scale_data_rows(d, 1./255);
|
|
smooth_data(d);
|
|
return d;
|
|
}
|
|
|
|
data load_go(char *filename)
|
|
{
|
|
FILE *fp = fopen(filename, "rb");
|
|
matrix X = make_matrix(3363059, 361);
|
|
matrix y = make_matrix(3363059, 361);
|
|
int row, col;
|
|
|
|
if(!fp) file_error(filename);
|
|
char *label;
|
|
int count = 0;
|
|
while((label = fgetl(fp))){
|
|
int i;
|
|
if(count == X.rows){
|
|
X = resize_matrix(X, count*2);
|
|
y = resize_matrix(y, count*2);
|
|
}
|
|
sscanf(label, "%d %d", &row, &col);
|
|
char *board = fgetl(fp);
|
|
|
|
int index = row*19 + col;
|
|
y.vals[count][index] = 1;
|
|
|
|
for(i = 0; i < 19*19; ++i){
|
|
float val = 0;
|
|
if(board[i] == '1') val = 1;
|
|
else if(board[i] == '2') val = -1;
|
|
X.vals[count][i] = val;
|
|
}
|
|
++count;
|
|
free(label);
|
|
free(board);
|
|
}
|
|
X = resize_matrix(X, count);
|
|
y = resize_matrix(y, count);
|
|
|
|
data d = {0};
|
|
d.shallow = 0;
|
|
d.X = X;
|
|
d.y = y;
|
|
|
|
|
|
fclose(fp);
|
|
|
|
return d;
|
|
}
|
|
|
|
|
|
void randomize_data(data d)
|
|
{
|
|
int i;
|
|
for(i = d.X.rows-1; i > 0; --i){
|
|
int index = rand()%i;
|
|
float *swap = d.X.vals[index];
|
|
d.X.vals[index] = d.X.vals[i];
|
|
d.X.vals[i] = swap;
|
|
|
|
swap = d.y.vals[index];
|
|
d.y.vals[index] = d.y.vals[i];
|
|
d.y.vals[i] = swap;
|
|
}
|
|
}
|
|
|
|
void scale_data_rows(data d, float s)
|
|
{
|
|
int i;
|
|
for(i = 0; i < d.X.rows; ++i){
|
|
scale_array(d.X.vals[i], d.X.cols, s);
|
|
}
|
|
}
|
|
|
|
void translate_data_rows(data d, float s)
|
|
{
|
|
int i;
|
|
for(i = 0; i < d.X.rows; ++i){
|
|
translate_array(d.X.vals[i], d.X.cols, s);
|
|
}
|
|
}
|
|
|
|
data copy_data(data d)
|
|
{
|
|
data c = {0};
|
|
c.w = d.w;
|
|
c.h = d.h;
|
|
c.shallow = 0;
|
|
c.num_boxes = d.num_boxes;
|
|
c.boxes = d.boxes;
|
|
c.X = copy_matrix(d.X);
|
|
c.y = copy_matrix(d.y);
|
|
return c;
|
|
}
|
|
|
|
void normalize_data_rows(data d)
|
|
{
|
|
int i;
|
|
for(i = 0; i < d.X.rows; ++i){
|
|
normalize_array(d.X.vals[i], d.X.cols);
|
|
}
|
|
}
|
|
|
|
data get_data_part(data d, int part, int total)
|
|
{
|
|
data p = {0};
|
|
p.shallow = 1;
|
|
p.X.rows = d.X.rows * (part + 1) / total - d.X.rows * part / total;
|
|
p.y.rows = d.y.rows * (part + 1) / total - d.y.rows * part / total;
|
|
p.X.cols = d.X.cols;
|
|
p.y.cols = d.y.cols;
|
|
p.X.vals = d.X.vals + d.X.rows * part / total;
|
|
p.y.vals = d.y.vals + d.y.rows * part / total;
|
|
return p;
|
|
}
|
|
|
|
data get_random_data(data d, int num)
|
|
{
|
|
data r = {0};
|
|
r.shallow = 1;
|
|
|
|
r.X.rows = num;
|
|
r.y.rows = num;
|
|
|
|
r.X.cols = d.X.cols;
|
|
r.y.cols = d.y.cols;
|
|
|
|
r.X.vals = calloc(num, sizeof(float *));
|
|
r.y.vals = calloc(num, sizeof(float *));
|
|
|
|
int i;
|
|
for(i = 0; i < num; ++i){
|
|
int index = rand()%d.X.rows;
|
|
r.X.vals[i] = d.X.vals[index];
|
|
r.y.vals[i] = d.y.vals[index];
|
|
}
|
|
return r;
|
|
}
|
|
|
|
data *split_data(data d, int part, int total)
|
|
{
|
|
data *split = calloc(2, sizeof(data));
|
|
int i;
|
|
int start = part*d.X.rows/total;
|
|
int end = (part+1)*d.X.rows/total;
|
|
data train;
|
|
data test;
|
|
train.shallow = test.shallow = 1;
|
|
|
|
test.X.rows = test.y.rows = end-start;
|
|
train.X.rows = train.y.rows = d.X.rows - (end-start);
|
|
train.X.cols = test.X.cols = d.X.cols;
|
|
train.y.cols = test.y.cols = d.y.cols;
|
|
|
|
train.X.vals = calloc(train.X.rows, sizeof(float*));
|
|
test.X.vals = calloc(test.X.rows, sizeof(float*));
|
|
train.y.vals = calloc(train.y.rows, sizeof(float*));
|
|
test.y.vals = calloc(test.y.rows, sizeof(float*));
|
|
|
|
for(i = 0; i < start; ++i){
|
|
train.X.vals[i] = d.X.vals[i];
|
|
train.y.vals[i] = d.y.vals[i];
|
|
}
|
|
for(i = start; i < end; ++i){
|
|
test.X.vals[i-start] = d.X.vals[i];
|
|
test.y.vals[i-start] = d.y.vals[i];
|
|
}
|
|
for(i = end; i < d.X.rows; ++i){
|
|
train.X.vals[i-(end-start)] = d.X.vals[i];
|
|
train.y.vals[i-(end-start)] = d.y.vals[i];
|
|
}
|
|
split[0] = train;
|
|
split[1] = test;
|
|
return split;
|
|
}
|
|
|