darknet/src/data.c
2015-07-20 14:56:53 -07:00

806 lines
20 KiB
C

#include "data.h"
#include "utils.h"
#include "image.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
unsigned int data_seed;
typedef struct load_args{
char **paths;
int n;
int m;
char **labels;
int k;
int h;
int w;
int nh;
int nw;
int num_boxes;
int classes;
int background;
data *d;
char *path;
image *im;
image *resized;
} load_args;
list *get_paths(char *filename)
{
char *path;
FILE *file = fopen(filename, "r");
if(!file) file_error(filename);
list *lines = make_list();
while((path=fgetl(file))){
list_insert(lines, path);
}
fclose(file);
return lines;
}
char **get_random_paths(char **paths, int n, int m)
{
char **random_paths = calloc(n, sizeof(char*));
int i;
for(i = 0; i < n; ++i){
int index = rand_r(&data_seed)%m;
random_paths[i] = paths[index];
if(i == 0) printf("%s\n", paths[index]);
}
return random_paths;
}
char **find_replace_paths(char **paths, int n, char *find, char *replace)
{
char **replace_paths = calloc(n, sizeof(char*));
int i;
for(i = 0; i < n; ++i){
char *replaced = find_replace(paths[i], find, replace);
replace_paths[i] = copy_string(replaced);
}
return replace_paths;
}
matrix load_image_paths_gray(char **paths, int n, int w, int h)
{
int i;
matrix X;
X.rows = n;
X.vals = calloc(X.rows, sizeof(float*));
X.cols = 0;
for(i = 0; i < n; ++i){
image im = load_image(paths[i], w, h, 1);
X.vals[i] = im.data;
X.cols = im.h*im.w*im.c;
}
return X;
}
matrix load_image_paths(char **paths, int n, int w, int h)
{
int i;
matrix X;
X.rows = n;
X.vals = calloc(X.rows, sizeof(float*));
X.cols = 0;
for(i = 0; i < n; ++i){
image im = load_image_color(paths[i], w, h);
X.vals[i] = im.data;
X.cols = im.h*im.w*im.c;
}
return X;
}
typedef struct{
int id;
float x,y,w,h;
float left, right, top, bottom;
} box_label;
box_label *read_boxes(char *filename, int *n)
{
box_label *boxes = calloc(1, sizeof(box_label));
FILE *file = fopen(filename, "r");
if(!file) file_error(filename);
float x, y, h, w;
int id;
int count = 0;
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
boxes = realloc(boxes, (count+1)*sizeof(box_label));
boxes[count].id = id;
boxes[count].x = x;
boxes[count].y = y;
boxes[count].h = h;
boxes[count].w = w;
boxes[count].left = x - w/2;
boxes[count].right = x + w/2;
boxes[count].top = y - h/2;
boxes[count].bottom = y + h/2;
++count;
}
fclose(file);
*n = count;
return boxes;
}
void randomize_boxes(box_label *b, int n)
{
int i;
for(i = 0; i < n; ++i){
box_label swap = b[i];
int index = rand_r(&data_seed)%n;
b[i] = b[index];
b[index] = swap;
}
}
void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy)
{
char *labelpath = find_replace(path, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int count = 0;
box_label *boxes = read_boxes(labelpath, &count);
randomize_boxes(boxes, count);
float x,y,w,h;
float left, top, right, bot;
int id;
int i;
if(background){
for(i = 0; i < num_boxes*num_boxes*(4+classes+background); i += 4+classes+background){
truth[i] = 1;
}
}
for(i = 0; i < count; ++i){
left = boxes[i].left * sx - dx;
right = boxes[i].right * sx - dx;
top = boxes[i].top * sy - dy;
bot = boxes[i].bottom* sy - dy;
id = boxes[i].id;
if(flip){
float swap = left;
left = 1. - right;
right = 1. - swap;
}
left = constrain(0, 1, left);
right = constrain(0, 1, right);
top = constrain(0, 1, top);
bot = constrain(0, 1, bot);
x = (left+right)/2;
y = (top+bot)/2;
w = (right - left);
h = (bot - top);
if (x <= 0 || x >= 1 || y <= 0 || y >= 1) continue;
int i = (int)(x*num_boxes);
int j = (int)(y*num_boxes);
x = x*num_boxes - i;
y = y*num_boxes - j;
/*
float maxwidth = distance_from_edge(i, num_boxes);
float maxheight = distance_from_edge(j, num_boxes);
w = w/maxwidth;
h = h/maxheight;
*/
w = constrain(0, 1, w);
h = constrain(0, 1, h);
if (w < .01 || h < .01) continue;
if(1){
//w = sqrt(w);
//h = sqrt(h);
w = pow(w, 1./2.);
h = pow(h, 1./2.);
}
int index = (i+j*num_boxes)*(4+classes+background);
if(truth[index+classes+background+2]) continue;
if(background) truth[index++] = 0;
truth[index+id] = 1;
index += classes;
truth[index++] = x;
truth[index++] = y;
truth[index++] = w;
truth[index++] = h;
}
free(boxes);
}
void fill_truth_localization(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
{
char *labelpath = find_replace(path, "objects", "object_labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int count;
box_label *boxes = read_boxes(labelpath, &count);
box_label box = boxes[0];
free(boxes);
float x,y,w,h;
float left, top, right, bot;
int id;
int i;
for(i = 0; i < count; ++i){
left = box.left * sx - dx;
right = box.right * sx - dx;
top = box.top * sy - dy;
bot = box.bottom* sy - dy;
id = box.id;
if(flip){
float swap = left;
left = 1. - right;
right = 1. - swap;
}
left = constrain(0, 1, left);
right = constrain(0, 1, right);
top = constrain(0, 1, top);
bot = constrain(0, 1, bot);
x = (left+right)/2;
y = (top+bot)/2;
w = (right - left);
h = (bot - top);
if (x <= 0 || x >= 1 || y <= 0 || y >= 1) continue;
w = constrain(0, 1, w);
h = constrain(0, 1, h);
if (w == 0 || h == 0) continue;
int index = id*4;
truth[index++] = x;
truth[index++] = y;
truth[index++] = w;
truth[index++] = h;
}
}
#define NUMCHARS 37
void print_letters(float *pred, int n)
{
int i;
for(i = 0; i < n; ++i){
int index = max_index(pred+i*NUMCHARS, NUMCHARS);
printf("%c", int_to_alphanum(index));
}
printf("\n");
}
void fill_truth_captcha(char *path, int n, float *truth)
{
char *begin = strrchr(path, '/');
++begin;
int i;
for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){
int index = alphanum_to_int(begin[i]);
if(index > 35) printf("Bad %c\n", begin[i]);
truth[i*NUMCHARS+index] = 1;
}
for(;i < n; ++i){
truth[i*NUMCHARS + NUMCHARS-1] = 1;
}
}
data load_data_captcha(char **paths, int n, int m, int k, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
data d;
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = make_matrix(n, k*NUMCHARS);
int i;
for(i = 0; i < n; ++i){
fill_truth_captcha(paths[i], k, d.y.vals[i]);
}
if(m) free(paths);
return d;
}
data load_data_captcha_encode(char **paths, int n, int m, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
data d;
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.X.cols = 17100;
d.y = d.X;
if(m) free(paths);
return d;
}
void fill_truth(char *path, char **labels, int k, float *truth)
{
int i;
memset(truth, 0, k*sizeof(float));
int count = 0;
for(i = 0; i < k; ++i){
if(strstr(path, labels[i])){
truth[i] = 1;
++count;
}
}
if(count != 1) printf("Too many or too few labels: %d, %s\n", count, path);
}
matrix load_labels_paths(char **paths, int n, char **labels, int k)
{
matrix y = make_matrix(n, k);
int i;
for(i = 0; i < n && labels; ++i){
fill_truth(paths[i], labels, k, y.vals[i]);
}
return y;
}
char **get_labels(char *filename)
{
list *plist = get_paths(filename);
char **labels = (char **)list_to_array(plist);
free_list(plist);
return labels;
}
void free_data(data d)
{
if(!d.shallow){
free_matrix(d.X);
free_matrix(d.y);
}else{
free(d.X.vals);
free(d.y.vals);
}
}
data load_data_localization(int n, char **paths, int m, int classes, int w, int h)
{
char **random_paths = get_random_paths(paths, n, m);
int i;
data d;
d.shallow = 0;
d.X.rows = n;
d.X.vals = calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*3;
int k = (4*classes);
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
image orig = load_image_color(random_paths[i], 0, 0);
int oh = orig.h;
int ow = orig.w;
int dw = 32;
int dh = 32;
int pleft = (rand_uniform() * dw);
int pright = (rand_uniform() * dw);
int ptop = (rand_uniform() * dh);
int pbot = (rand_uniform() * dh);
int swidth = ow - pleft - pright;
int sheight = oh - ptop - pbot;
float sx = (float)swidth / ow;
float sy = (float)sheight / oh;
int flip = rand_r(&data_seed)%2;
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
float dx = ((float)pleft/ow)/sx;
float dy = ((float)ptop /oh)/sy;
free_image(orig);
image sized = resize_image(cropped, w, h);
free_image(cropped);
if(flip) flip_image(sized);
d.X.vals[i] = sized.data;
fill_truth_localization(random_paths[i], d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy);
}
free(random_paths);
return d;
}
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background)
{
char **random_paths = get_random_paths(paths, n, m);
int i;
data d;
d.shallow = 0;
d.X.rows = n;
d.X.vals = calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*3;
int k = num_boxes*num_boxes*(4+classes+background);
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
image orig = load_image_color(random_paths[i], 0, 0);
int oh = orig.h;
int ow = orig.w;
int dw = ow/10;
int dh = oh/10;
int pleft = (rand_uniform() * 2*dw - dw);
int pright = (rand_uniform() * 2*dw - dw);
int ptop = (rand_uniform() * 2*dh - dh);
int pbot = (rand_uniform() * 2*dh - dh);
int swidth = ow - pleft - pright;
int sheight = oh - ptop - pbot;
float sx = (float)swidth / ow;
float sy = (float)sheight / oh;
/*
float angle = rand_uniform()*.1 - .05;
image rot = rotate_image(orig, angle);
free_image(orig);
orig = rot;
*/
int flip = rand_r(&data_seed)%2;
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
float dx = ((float)pleft/ow)/sx;
float dy = ((float)ptop /oh)/sy;
free_image(orig);
image sized = resize_image(cropped, w, h);
free_image(cropped);
if(flip) flip_image(sized);
d.X.vals[i] = sized.data;
fill_truth_detection(random_paths[i], d.y.vals[i], classes, num_boxes, flip, background, dx, dy, 1./sx, 1./sy);
}
free(random_paths);
return d;
}
void *load_image_in_thread(void *ptr)
{
load_args a = *(load_args*)ptr;
free(ptr);
*(a.im) = load_image_color(a.path, 0, 0);
*(a.resized) = resize_image(*(a.im), a.w, a.h);
return 0;
}
pthread_t load_image_thread(char *path, image *im, image *resized, int w, int h)
{
pthread_t thread;
struct load_args *args = calloc(1, sizeof(struct load_args));
args->path = path;
args->w = w;
args->h = h;
args->im = im;
args->resized = resized;
if(pthread_create(&thread, 0, load_image_in_thread, args)) {
error("Thread creation failed");
}
return thread;
}
void *load_localization_thread(void *ptr)
{
printf("Loading data: %d\n", rand_r(&data_seed));
struct load_args a = *(struct load_args*)ptr;
*a.d = load_data_localization(a.n, a.paths, a.m, a.classes, a.w, a.h);
free(ptr);
return 0;
}
pthread_t load_data_localization_thread(int n, char **paths, int m, int classes, int w, int h, data *d)
{
pthread_t thread;
struct load_args *args = calloc(1, sizeof(struct load_args));
args->n = n;
args->paths = paths;
args->m = m;
args->w = w;
args->h = h;
args->classes = classes;
args->d = d;
if(pthread_create(&thread, 0, load_localization_thread, args)) {
error("Thread creation failed");
}
return thread;
}
void *load_detection_thread(void *ptr)
{
printf("Loading data: %d\n", rand_r(&data_seed));
struct load_args a = *(struct load_args*)ptr;
*a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background);
free(ptr);
return 0;
}
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int w, int h, int nh, int nw, int background, data *d)
{
pthread_t thread;
struct load_args *args = calloc(1, sizeof(struct load_args));
args->n = n;
args->paths = paths;
args->m = m;
args->h = h;
args->w = w;
args->nh = nh;
args->nw = nw;
args->num_boxes = nw;
args->classes = classes;
args->background = background;
args->d = d;
if(pthread_create(&thread, 0, load_detection_thread, args)) {
error("Thread creation failed");
}
return thread;
}
data load_data_writing(char **paths, int n, int m, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png");
data d;
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = load_image_paths_gray(replace_paths, n, w/8, h/8);
if(m) free(paths);
int i;
for(i = 0; i < n; ++i) free(replace_paths[i]);
free(replace_paths);
return d;
}
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
data d;
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = load_labels_paths(paths, n, labels, k);
if(m) free(paths);
return d;
}
void *load_in_thread(void *ptr)
{
struct load_args a = *(struct load_args*)ptr;
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.w, a.h);
free(ptr);
return 0;
}
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int w, int h, data *d)
{
pthread_t thread;
struct load_args *args = calloc(1, sizeof(struct load_args));
args->n = n;
args->paths = paths;
args->m = m;
args->labels = labels;
args->k = k;
args->h = h;
args->w = w;
args->d = d;
if(pthread_create(&thread, 0, load_in_thread, args)) {
error("Thread creation failed");
}
return thread;
}
matrix concat_matrix(matrix m1, matrix m2)
{
int i, count = 0;
matrix m;
m.cols = m1.cols;
m.rows = m1.rows+m2.rows;
m.vals = calloc(m1.rows + m2.rows, sizeof(float*));
for(i = 0; i < m1.rows; ++i){
m.vals[count++] = m1.vals[i];
}
for(i = 0; i < m2.rows; ++i){
m.vals[count++] = m2.vals[i];
}
return m;
}
data concat_data(data d1, data d2)
{
data d;
d.shallow = 1;
d.X = concat_matrix(d1.X, d2.X);
d.y = concat_matrix(d1.y, d2.y);
return d;
}
data load_categorical_data_csv(char *filename, int target, int k)
{
data d;
d.shallow = 0;
matrix X = csv_to_matrix(filename);
float *truth_1d = pop_column(&X, target);
float **truth = one_hot_encode(truth_1d, X.rows, k);
matrix y;
y.rows = X.rows;
y.cols = k;
y.vals = truth;
d.X = X;
d.y = y;
free(truth_1d);
return d;
}
data load_cifar10_data(char *filename)
{
data d;
d.shallow = 0;
long i,j;
matrix X = make_matrix(10000, 3072);
matrix y = make_matrix(10000, 10);
d.X = X;
d.y = y;
FILE *fp = fopen(filename, "rb");
if(!fp) file_error(filename);
for(i = 0; i < 10000; ++i){
unsigned char bytes[3073];
fread(bytes, 1, 3073, fp);
int class = bytes[0];
y.vals[i][class] = 1;
for(j = 0; j < X.cols; ++j){
X.vals[i][j] = (double)bytes[j+1];
}
}
translate_data_rows(d, -128);
scale_data_rows(d, 1./128);
//normalize_data_rows(d);
fclose(fp);
return d;
}
void get_random_batch(data d, int n, float *X, float *y)
{
int j;
for(j = 0; j < n; ++j){
int index = rand_r(&data_seed)%d.X.rows;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
}
void get_next_batch(data d, int n, int offset, float *X, float *y)
{
int j;
for(j = 0; j < n; ++j){
int index = offset + j;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
}
data load_all_cifar10()
{
data d;
d.shallow = 0;
int i,j,b;
matrix X = make_matrix(50000, 3072);
matrix y = make_matrix(50000, 10);
d.X = X;
d.y = y;
for(b = 0; b < 5; ++b){
char buff[256];
sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1);
FILE *fp = fopen(buff, "rb");
if(!fp) file_error(buff);
for(i = 0; i < 10000; ++i){
unsigned char bytes[3073];
fread(bytes, 1, 3073, fp);
int class = bytes[0];
y.vals[i+b*10000][class] = 1;
for(j = 0; j < X.cols; ++j){
X.vals[i+b*10000][j] = (double)bytes[j+1];
}
}
fclose(fp);
}
//normalize_data_rows(d);
translate_data_rows(d, -128);
scale_data_rows(d, 1./128);
return d;
}
void randomize_data(data d)
{
int i;
for(i = d.X.rows-1; i > 0; --i){
int index = rand_r(&data_seed)%i;
float *swap = d.X.vals[index];
d.X.vals[index] = d.X.vals[i];
d.X.vals[i] = swap;
swap = d.y.vals[index];
d.y.vals[index] = d.y.vals[i];
d.y.vals[i] = swap;
}
}
void scale_data_rows(data d, float s)
{
int i;
for(i = 0; i < d.X.rows; ++i){
scale_array(d.X.vals[i], d.X.cols, s);
}
}
void translate_data_rows(data d, float s)
{
int i;
for(i = 0; i < d.X.rows; ++i){
translate_array(d.X.vals[i], d.X.cols, s);
}
}
void normalize_data_rows(data d)
{
int i;
for(i = 0; i < d.X.rows; ++i){
normalize_array(d.X.vals[i], d.X.cols);
}
}
data *split_data(data d, int part, int total)
{
data *split = calloc(2, sizeof(data));
int i;
int start = part*d.X.rows/total;
int end = (part+1)*d.X.rows/total;
data train;
data test;
train.shallow = test.shallow = 1;
test.X.rows = test.y.rows = end-start;
train.X.rows = train.y.rows = d.X.rows - (end-start);
train.X.cols = test.X.cols = d.X.cols;
train.y.cols = test.y.cols = d.y.cols;
train.X.vals = calloc(train.X.rows, sizeof(float*));
test.X.vals = calloc(test.X.rows, sizeof(float*));
train.y.vals = calloc(train.y.rows, sizeof(float*));
test.y.vals = calloc(test.y.rows, sizeof(float*));
for(i = 0; i < start; ++i){
train.X.vals[i] = d.X.vals[i];
train.y.vals[i] = d.y.vals[i];
}
for(i = start; i < end; ++i){
test.X.vals[i-start] = d.X.vals[i];
test.y.vals[i-start] = d.y.vals[i];
}
for(i = end; i < d.X.rows; ++i){
train.X.vals[i-(end-start)] = d.X.vals[i];
train.y.vals[i-(end-start)] = d.y.vals[i];
}
split[0] = train;
split[1] = test;
return split;
}