darknet/src/detection_layer.c
Joseph Redmon f98efe6c32 what happened?
Conflicts:
	Makefile
2015-07-10 16:34:38 -07:00

211 lines
6.9 KiB
C

#include "detection_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
#include "box.h"
#include "cuda.h"
#include "utils.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int get_detection_layer_locations(detection_layer l)
{
return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness));
}
int get_detection_layer_output_size(detection_layer l)
{
return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords);
}
detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness)
{
detection_layer l = {0};
l.type = DETECTION;
l.batch = batch;
l.inputs = inputs;
l.classes = classes;
l.coords = coords;
l.rescore = rescore;
l.objectness = objectness;
l.background = background;
l.joint = joint;
l.cost = calloc(1, sizeof(float));
l.does_cost=1;
int outputs = get_detection_layer_output_size(l);
l.outputs = outputs;
l.output = calloc(batch*outputs, sizeof(float));
l.delta = calloc(batch*outputs, sizeof(float));
#ifdef GPU
l.output_gpu = cuda_make_array(0, batch*outputs);
l.delta_gpu = cuda_make_array(0, batch*outputs);
#endif
fprintf(stderr, "Detection Layer\n");
srand(0);
return l;
}
void forward_detection_layer(const detection_layer l, network_state state)
{
int in_i = 0;
int out_i = 0;
int locations = get_detection_layer_locations(l);
int i,j;
for(i = 0; i < l.batch*locations; ++i){
int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]);
float scale = 1;
if(l.joint) scale = state.input[in_i++];
else if(l.objectness){
l.output[out_i++] = 1-state.input[in_i++];
scale = mask;
}
else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
for(j = 0; j < l.classes; ++j){
l.output[out_i++] = scale*state.input[in_i++];
}
if(l.objectness){
}else if(l.background){
softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
activate_array(state.input+in_i, l.coords, LOGISTIC);
}
for(j = 0; j < l.coords; ++j){
l.output[out_i++] = mask*state.input[in_i++];
}
}
float avg_iou = 0;
int count = 0;
if(l.does_cost && state.train){
*(l.cost) = 0;
int size = get_detection_layer_output_size(l) * l.batch;
memset(l.delta, 0, size * sizeof(float));
for (i = 0; i < l.batch*locations; ++i) {
int classes = l.objectness+l.classes;
int offset = i*(classes+l.coords);
for (j = offset; j < offset+classes; ++j) {
*(l.cost) += pow(state.truth[j] - l.output[j], 2);
l.delta[j] = state.truth[j] - l.output[j];
}
box truth;
truth.x = state.truth[j+0]/7;
truth.y = state.truth[j+1]/7;
truth.w = pow(state.truth[j+2], 2);
truth.h = pow(state.truth[j+3], 2);
box out;
out.x = l.output[j+0]/7;
out.y = l.output[j+1]/7;
out.w = pow(l.output[j+2], 2);
out.h = pow(l.output[j+3], 2);
if(!(truth.w*truth.h)) continue;
float iou = box_iou(out, truth);
avg_iou += iou;
++count;
dbox delta = diou(out, truth);
l.delta[j+0] = 10 * delta.dx/7;
l.delta[j+1] = 10 * delta.dy/7;
l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w);
l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h);
*(l.cost) += pow((1-iou), 2);
l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]);
l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]);
l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]);
l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]);
if(l.rescore){
for (j = offset; j < offset+classes; ++j) {
if(state.truth[j]) state.truth[j] = iou;
l.delta[j] = state.truth[j] - l.output[j];
}
}
}
printf("Avg IOU: %f\n", avg_iou/count);
}
}
void backward_detection_layer(const detection_layer l, network_state state)
{
int locations = get_detection_layer_locations(l);
int i,j;
int in_i = 0;
int out_i = 0;
for(i = 0; i < l.batch*locations; ++i){
float scale = 1;
float latent_delta = 0;
if(l.joint) scale = state.input[in_i++];
else if (l.objectness) state.delta[in_i++] = -l.delta[out_i++];
else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++];
for(j = 0; j < l.classes; ++j){
latent_delta += state.input[in_i]*l.delta[out_i];
state.delta[in_i++] = scale*l.delta[out_i++];
}
if (l.objectness) {
}else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
for(j = 0; j < l.coords; ++j){
state.delta[in_i++] = l.delta[out_i++];
}
if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] = latent_delta;
}
}
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer l, network_state state)
{
int outputs = get_detection_layer_output_size(l);
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
truth_cpu = calloc(l.batch*outputs, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
forward_detection_layer(l, cpu_state);
cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
free(cpu_state.input);
if(cpu_state.truth) free(cpu_state.truth);
}
void backward_detection_layer_gpu(detection_layer l, network_state state)
{
int outputs = get_detection_layer_output_size(l);
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
truth_cpu = calloc(l.batch*outputs, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.input = in_cpu;
cpu_state.truth = truth_cpu;
cpu_state.delta = delta_cpu;
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
backward_detection_layer(l, cpu_state);
cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
free(in_cpu);
free(delta_cpu);
}
#endif