mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
195 lines
6.0 KiB
C
195 lines
6.0 KiB
C
#include "network.h"
|
|
#include "utils.h"
|
|
#include "parser.h"
|
|
|
|
void train_imagenet(char *cfgfile, char *weightfile)
|
|
{
|
|
data_seed = time(0);
|
|
srand(time(0));
|
|
float avg_loss = -1;
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
//net.seen=0;
|
|
int imgs = 1024;
|
|
int i = net.seen/imgs;
|
|
char **labels = get_labels("data/inet.labels.list");
|
|
list *plist = get_paths("/data/imagenet/cls.train.list");
|
|
char **paths = (char **)list_to_array(plist);
|
|
printf("%d\n", plist->size);
|
|
clock_t time;
|
|
pthread_t load_thread;
|
|
data train;
|
|
data buffer;
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, net.w, net.h, &buffer);
|
|
while(1){
|
|
++i;
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
|
|
/*
|
|
image im = float_to_image(256, 256, 3, train.X.vals[114]);
|
|
show_image(im, "training");
|
|
cvWaitKey(0);
|
|
*/
|
|
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, net.w, net.h, &buffer);
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
net.seen += imgs;
|
|
if(avg_loss == -1) avg_loss = loss;
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
|
|
free_data(train);
|
|
if((i % 20000) == 0) net.learning_rate *= .1;
|
|
if(i%1000==0){
|
|
char buff[256];
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
|
|
save_weights(net, buff);
|
|
}
|
|
}
|
|
}
|
|
|
|
void validate_imagenet(char *filename, char *weightfile)
|
|
{
|
|
int i = 0;
|
|
network net = parse_network_cfg(filename);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
srand(time(0));
|
|
|
|
char **labels = get_labels("data/inet.labels.list");
|
|
list *plist = get_paths("data/inet.val.list");
|
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
int m = plist->size;
|
|
free_list(plist);
|
|
|
|
clock_t time;
|
|
float avg_acc = 0;
|
|
float avg_top5 = 0;
|
|
int splits = 50;
|
|
int num = (i+1)*m/splits - i*m/splits;
|
|
|
|
data val, buffer;
|
|
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
|
|
for(i = 1; i <= splits; ++i){
|
|
time=clock();
|
|
|
|
pthread_join(load_thread, 0);
|
|
val = buffer;
|
|
|
|
num = (i+1)*m/splits - i*m/splits;
|
|
char **part = paths+(i*m/splits);
|
|
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
|
|
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
|
|
|
|
time=clock();
|
|
float *acc = network_accuracies(net, val);
|
|
avg_acc += acc[0];
|
|
avg_top5 += acc[1];
|
|
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
|
|
free_data(val);
|
|
}
|
|
}
|
|
|
|
void test_imagenet(char *cfgfile, char *weightfile, char *filename)
|
|
{
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
set_batch_network(&net, 1);
|
|
srand(2222222);
|
|
int i = 0;
|
|
char **names = get_labels("data/shortnames.txt");
|
|
clock_t time;
|
|
char input[256];
|
|
int indexes[10];
|
|
while(1){
|
|
if(filename){
|
|
strncpy(input, filename, 256);
|
|
}else{
|
|
printf("Enter Image Path: ");
|
|
fflush(stdout);
|
|
fgets(input, 256, stdin);
|
|
strtok(input, "\n");
|
|
}
|
|
image im = load_image_color(input, 256, 256);
|
|
float *X = im.data;
|
|
time=clock();
|
|
float *predictions = network_predict(net, X);
|
|
top_predictions(net, 10, indexes);
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
|
for(i = 0; i < 10; ++i){
|
|
int index = indexes[i];
|
|
printf("%s: %f\n", names[index], predictions[index]);
|
|
}
|
|
free_image(im);
|
|
if (filename) break;
|
|
}
|
|
}
|
|
|
|
void run_imagenet(int argc, char **argv)
|
|
{
|
|
if(argc < 4){
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
return;
|
|
}
|
|
|
|
char *cfg = argv[3];
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
char *filename = (argc > 5) ? argv[5]: 0;
|
|
if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights, filename);
|
|
else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights);
|
|
else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights);
|
|
}
|
|
|
|
/*
|
|
void train_imagenet_distributed(char *address)
|
|
{
|
|
float avg_loss = 1;
|
|
srand(time(0));
|
|
network net = parse_network_cfg("cfg/net.cfg");
|
|
set_learning_network(&net, 0, 1, 0);
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
int imgs = net.batch;
|
|
int i = 0;
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
|
list *plist = get_paths("/data/imagenet/cls.train.list");
|
|
char **paths = (char **)list_to_array(plist);
|
|
printf("%d\n", plist->size);
|
|
clock_t time;
|
|
data train, buffer;
|
|
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
|
|
while(1){
|
|
i += 1;
|
|
|
|
time=clock();
|
|
client_update(net, address);
|
|
printf("Updated: %lf seconds\n", sec(clock()-time));
|
|
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
normalize_data_rows(train);
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
time=clock();
|
|
|
|
float loss = train_network(net, train);
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
|
free_data(train);
|
|
}
|
|
}
|
|
*/
|
|
|