darknet/src/imagenet.c
2015-07-13 15:04:21 -07:00

195 lines
6.0 KiB
C

#include "network.h"
#include "utils.h"
#include "parser.h"
void train_imagenet(char *cfgfile, char *weightfile)
{
data_seed = time(0);
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
//net.seen=0;
int imgs = 1024;
int i = net.seen/imgs;
char **labels = get_labels("data/inet.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
pthread_t load_thread;
data train;
data buffer;
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, net.w, net.h, &buffer);
while(1){
++i;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
/*
image im = float_to_image(256, 256, 3, train.X.vals[114]);
show_image(im, "training");
cvWaitKey(0);
*/
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, net.w, net.h, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if((i % 20000) == 0) net.learning_rate *= .1;
if(i%1000==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
}
}
void validate_imagenet(char *filename, char *weightfile)
{
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
char **labels = get_labels("data/inet.labels.list");
list *plist = get_paths("data/inet.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
float avg_acc = 0;
float avg_top5 = 0;
int splits = 50;
int num = (i+1)*m/splits - i*m/splits;
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
float *acc = network_accuracies(net, val);
avg_acc += acc[0];
avg_top5 += acc[1];
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
free_data(val);
}
}
void test_imagenet(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char **names = get_labels("data/shortnames.txt");
clock_t time;
char input[256];
int indexes[10];
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
fgets(input, 256, stdin);
strtok(input, "\n");
}
image im = load_image_color(input, 256, 256);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, 10, indexes);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
for(i = 0; i < 10; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
if (filename) break;
}
}
void run_imagenet(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights);
}
/*
void train_imagenet_distributed(char *address)
{
float avg_loss = 1;
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_learning_network(&net, 0, 1, 0);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch;
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
data train, buffer;
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
while(1){
i += 1;
time=clock();
client_update(net, address);
printf("Updated: %lf seconds\n", sec(clock()-time));
time=clock();
pthread_join(load_thread, 0);
train = buffer;
normalize_data_rows(train);
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
free_data(train);
}
}
*/