darknet/src/parser.c

702 lines
22 KiB
C

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "parser.h"
#include "activations.h"
#include "crop_layer.h"
#include "cost_layer.h"
#include "convolutional_layer.h"
#include "deconvolutional_layer.h"
#include "connected_layer.h"
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
#include "list.h"
#include "option_list.h"
#include "utils.h"
typedef struct{
char *type;
list *options;
}section;
int is_network(section *s);
int is_convolutional(section *s);
int is_deconvolutional(section *s);
int is_connected(section *s);
int is_maxpool(section *s);
int is_dropout(section *s);
int is_softmax(section *s);
int is_crop(section *s);
int is_cost(section *s);
int is_detection(section *s);
int is_normalization(section *s);
list *read_cfg(char *filename);
void free_section(section *s)
{
free(s->type);
node *n = s->options->front;
while(n){
kvp *pair = (kvp *)n->val;
free(pair->key);
free(pair);
node *next = n->next;
free(n);
n = next;
}
free(s->options);
free(s);
}
void parse_data(char *data, float *a, int n)
{
int i;
if(!data) return;
char *curr = data;
char *next = data;
int done = 0;
for(i = 0; i < n && !done; ++i){
while(*++next !='\0' && *next != ',');
if(*next == '\0') done = 1;
*next = '\0';
sscanf(curr, "%g", &a[i]);
curr = next+1;
}
}
typedef struct size_params{
int batch;
int inputs;
int h;
int w;
int c;
} size_params;
deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
{
int n = option_find_int(options, "filters",1);
int size = option_find_int(options, "size",1);
int stride = option_find_int(options, "stride",1);
char *activation_s = option_find_str(options, "activation", "logistic");
ACTIVATION activation = get_activation(activation_s);
int batch,h,w,c;
h = params.h;
w = params.w;
c = params.c;
batch=params.batch;
if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
parse_data(weights, layer->filters, c*n*size*size);
parse_data(biases, layer->biases, n);
#ifdef GPU
if(weights || biases) push_deconvolutional_layer(*layer);
#endif
option_unused(options);
return layer;
}
convolutional_layer *parse_convolutional(list *options, size_params params)
{
int n = option_find_int(options, "filters",1);
int size = option_find_int(options, "size",1);
int stride = option_find_int(options, "stride",1);
int pad = option_find_int(options, "pad",0);
char *activation_s = option_find_str(options, "activation", "logistic");
ACTIVATION activation = get_activation(activation_s);
int batch,h,w,c;
h = params.h;
w = params.w;
c = params.c;
batch=params.batch;
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
parse_data(weights, layer->filters, c*n*size*size);
parse_data(biases, layer->biases, n);
#ifdef GPU
if(weights || biases) push_convolutional_layer(*layer);
#endif
option_unused(options);
return layer;
}
connected_layer *parse_connected(list *options, size_params params)
{
int output = option_find_int(options, "output",1);
char *activation_s = option_find_str(options, "activation", "logistic");
ACTIVATION activation = get_activation(activation_s);
connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
parse_data(biases, layer->biases, output);
parse_data(weights, layer->weights, params.inputs*output);
#ifdef GPU
if(weights || biases) push_connected_layer(*layer);
#endif
option_unused(options);
return layer;
}
softmax_layer *parse_softmax(list *options, size_params params)
{
int groups = option_find_int(options, "groups",1);
softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
option_unused(options);
return layer;
}
detection_layer *parse_detection(list *options, size_params params)
{
int coords = option_find_int(options, "coords", 1);
int classes = option_find_int(options, "classes", 1);
int rescore = option_find_int(options, "rescore", 1);
int nuisance = option_find_int(options, "nuisance", 0);
int background = option_find_int(options, "background", 1);
detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance);
option_unused(options);
return layer;
}
cost_layer *parse_cost(list *options, size_params params)
{
char *type_s = option_find_str(options, "type", "sse");
COST_TYPE type = get_cost_type(type_s);
cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
option_unused(options);
return layer;
}
crop_layer *parse_crop(list *options, size_params params)
{
int crop_height = option_find_int(options, "crop_height",1);
int crop_width = option_find_int(options, "crop_width",1);
int flip = option_find_int(options, "flip",0);
float angle = option_find_float(options, "angle",0);
float saturation = option_find_float(options, "saturation",1);
float exposure = option_find_float(options, "exposure",1);
int batch,h,w,c;
h = params.h;
w = params.w;
c = params.c;
batch=params.batch;
if(!(h && w && c)) error("Layer before crop layer must output image.");
crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
option_unused(options);
return layer;
}
maxpool_layer *parse_maxpool(list *options, size_params params)
{
int stride = option_find_int(options, "stride",1);
int size = option_find_int(options, "size",stride);
int batch,h,w,c;
h = params.h;
w = params.w;
c = params.c;
batch=params.batch;
if(!(h && w && c)) error("Layer before maxpool layer must output image.");
maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
option_unused(options);
return layer;
}
dropout_layer *parse_dropout(list *options, size_params params)
{
float probability = option_find_float(options, "probability", .5);
dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
option_unused(options);
return layer;
}
normalization_layer *parse_normalization(list *options, size_params params)
{
int size = option_find_int(options, "size",1);
float alpha = option_find_float(options, "alpha", 0.);
float beta = option_find_float(options, "beta", 1.);
float kappa = option_find_float(options, "kappa", 1.);
int batch,h,w,c;
h = params.h;
w = params.w;
c = params.c;
batch=params.batch;
if(!(h && w && c)) error("Layer before normalization layer must output image.");
normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
option_unused(options);
return layer;
}
void parse_net_options(list *options, network *net)
{
net->batch = option_find_int(options, "batch",1);
net->learning_rate = option_find_float(options, "learning_rate", .001);
net->momentum = option_find_float(options, "momentum", .9);
net->decay = option_find_float(options, "decay", .0001);
net->seen = option_find_int(options, "seen",0);
int subdivs = option_find_int(options, "subdivisions",1);
net->batch /= subdivs;
net->subdivisions = subdivs;
net->h = option_find_int_quiet(options, "height",0);
net->w = option_find_int_quiet(options, "width",0);
net->c = option_find_int_quiet(options, "channels",0);
net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
option_unused(options);
}
network parse_network_cfg(char *filename)
{
list *sections = read_cfg(filename);
node *n = sections->front;
if(!n) error("Config file has no sections");
network net = make_network(sections->size - 1);
size_params params;
section *s = (section *)n->val;
list *options = s->options;
if(!is_network(s)) error("First section must be [net] or [network]");
parse_net_options(options, &net);
params.h = net.h;
params.w = net.w;
params.c = net.c;
params.inputs = net.inputs;
params.batch = net.batch;
n = n->next;
int count = 0;
while(n){
fprintf(stderr, "%d: ", count);
s = (section *)n->val;
options = s->options;
if(is_convolutional(s)){
convolutional_layer *layer = parse_convolutional(options, params);
net.types[count] = CONVOLUTIONAL;
net.layers[count] = layer;
}else if(is_deconvolutional(s)){
deconvolutional_layer *layer = parse_deconvolutional(options, params);
net.types[count] = DECONVOLUTIONAL;
net.layers[count] = layer;
}else if(is_connected(s)){
connected_layer *layer = parse_connected(options, params);
net.types[count] = CONNECTED;
net.layers[count] = layer;
}else if(is_crop(s)){
crop_layer *layer = parse_crop(options, params);
net.types[count] = CROP;
net.layers[count] = layer;
}else if(is_cost(s)){
cost_layer *layer = parse_cost(options, params);
net.types[count] = COST;
net.layers[count] = layer;
}else if(is_detection(s)){
detection_layer *layer = parse_detection(options, params);
net.types[count] = DETECTION;
net.layers[count] = layer;
}else if(is_softmax(s)){
softmax_layer *layer = parse_softmax(options, params);
net.types[count] = SOFTMAX;
net.layers[count] = layer;
}else if(is_maxpool(s)){
maxpool_layer *layer = parse_maxpool(options, params);
net.types[count] = MAXPOOL;
net.layers[count] = layer;
}else if(is_normalization(s)){
normalization_layer *layer = parse_normalization(options, params);
net.types[count] = NORMALIZATION;
net.layers[count] = layer;
}else if(is_dropout(s)){
dropout_layer *layer = parse_dropout(options, params);
net.types[count] = DROPOUT;
net.layers[count] = layer;
}else{
fprintf(stderr, "Type not recognized: %s\n", s->type);
}
free_section(s);
n = n->next;
if(n){
image im = get_network_image_layer(net, count);
params.h = im.h;
params.w = im.w;
params.c = im.c;
params.inputs = get_network_output_size_layer(net, count);
}
++count;
}
free_list(sections);
net.outputs = get_network_output_size(net);
net.output = get_network_output(net);
return net;
}
int is_crop(section *s)
{
return (strcmp(s->type, "[crop]")==0);
}
int is_cost(section *s)
{
return (strcmp(s->type, "[cost]")==0);
}
int is_detection(section *s)
{
return (strcmp(s->type, "[detection]")==0);
}
int is_deconvolutional(section *s)
{
return (strcmp(s->type, "[deconv]")==0
|| strcmp(s->type, "[deconvolutional]")==0);
}
int is_convolutional(section *s)
{
return (strcmp(s->type, "[conv]")==0
|| strcmp(s->type, "[convolutional]")==0);
}
int is_network(section *s)
{
return (strcmp(s->type, "[net]")==0
|| strcmp(s->type, "[network]")==0);
}
int is_connected(section *s)
{
return (strcmp(s->type, "[conn]")==0
|| strcmp(s->type, "[connected]")==0);
}
int is_maxpool(section *s)
{
return (strcmp(s->type, "[max]")==0
|| strcmp(s->type, "[maxpool]")==0);
}
int is_dropout(section *s)
{
return (strcmp(s->type, "[dropout]")==0);
}
int is_softmax(section *s)
{
return (strcmp(s->type, "[soft]")==0
|| strcmp(s->type, "[softmax]")==0);
}
int is_normalization(section *s)
{
return (strcmp(s->type, "[lrnorm]")==0
|| strcmp(s->type, "[localresponsenormalization]")==0);
}
int read_option(char *s, list *options)
{
size_t i;
size_t len = strlen(s);
char *val = 0;
for(i = 0; i < len; ++i){
if(s[i] == '='){
s[i] = '\0';
val = s+i+1;
break;
}
}
if(i == len-1) return 0;
char *key = s;
option_insert(options, key, val);
return 1;
}
list *read_cfg(char *filename)
{
FILE *file = fopen(filename, "r");
if(file == 0) file_error(filename);
char *line;
int nu = 0;
list *sections = make_list();
section *current = 0;
while((line=fgetl(file)) != 0){
++ nu;
strip(line);
switch(line[0]){
case '[':
current = malloc(sizeof(section));
list_insert(sections, current);
current->options = make_list();
current->type = line;
break;
case '\0':
case '#':
case ';':
free(line);
break;
default:
if(!read_option(line, current->options)){
fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
free(line);
}
break;
}
}
fclose(file);
return sections;
}
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
{
#ifdef GPU
if(gpu_index >= 0) pull_convolutional_layer(*l);
#endif
int i;
fprintf(fp, "[convolutional]\n");
fprintf(fp, "filters=%d\n"
"size=%d\n"
"stride=%d\n"
"pad=%d\n"
"activation=%s\n",
l->n, l->size, l->stride, l->pad,
get_activation_string(l->activation));
fprintf(fp, "biases=");
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
fprintf(fp, "\n");
fprintf(fp, "weights=");
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
fprintf(fp, "\n\n");
}
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
{
#ifdef GPU
if(gpu_index >= 0) pull_deconvolutional_layer(*l);
#endif
int i;
fprintf(fp, "[deconvolutional]\n");
fprintf(fp, "filters=%d\n"
"size=%d\n"
"stride=%d\n"
"activation=%s\n",
l->n, l->size, l->stride,
get_activation_string(l->activation));
fprintf(fp, "biases=");
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
fprintf(fp, "\n");
fprintf(fp, "weights=");
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
fprintf(fp, "\n\n");
}
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
{
fprintf(fp, "[dropout]\n");
fprintf(fp, "probability=%g\n\n", l->probability);
}
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
{
#ifdef GPU
if(gpu_index >= 0) pull_connected_layer(*l);
#endif
int i;
fprintf(fp, "[connected]\n");
fprintf(fp, "output=%d\n"
"activation=%s\n",
l->outputs,
get_activation_string(l->activation));
fprintf(fp, "biases=");
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
fprintf(fp, "\n");
fprintf(fp, "weights=");
for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
fprintf(fp, "\n\n");
}
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
{
fprintf(fp, "[crop]\n");
fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
}
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
{
fprintf(fp, "[maxpool]\n");
fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
}
void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
{
fprintf(fp, "[localresponsenormalization]\n");
fprintf(fp, "size=%d\n"
"alpha=%g\n"
"beta=%g\n"
"kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
}
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
{
fprintf(fp, "[softmax]\n");
fprintf(fp, "\n");
}
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
{
fprintf(fp, "[detection]\n");
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
fprintf(fp, "\n");
}
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
fprintf(fp, "\n");
}
void save_weights(network net, char *filename)
{
fprintf(stderr, "Saving weights to %s\n", filename);
FILE *fp = fopen(filename, "w");
if(!fp) file_error(filename);
fwrite(&net.learning_rate, sizeof(float), 1, fp);
fwrite(&net.momentum, sizeof(float), 1, fp);
fwrite(&net.decay, sizeof(float), 1, fp);
fwrite(&net.seen, sizeof(int), 1, fp);
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
#ifdef GPU
if(gpu_index >= 0){
pull_convolutional_layer(layer);
}
#endif
int num = layer.n*layer.c*layer.size*layer.size;
fwrite(layer.biases, sizeof(float), layer.n, fp);
fwrite(layer.filters, sizeof(float), num, fp);
}
if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
#ifdef GPU
if(gpu_index >= 0){
pull_deconvolutional_layer(layer);
}
#endif
int num = layer.n*layer.c*layer.size*layer.size;
fwrite(layer.biases, sizeof(float), layer.n, fp);
fwrite(layer.filters, sizeof(float), num, fp);
}
if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net.layers[i];
#ifdef GPU
if(gpu_index >= 0){
pull_connected_layer(layer);
}
#endif
fwrite(layer.biases, sizeof(float), layer.outputs, fp);
fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
}
}
fclose(fp);
}
void load_weights_upto(network *net, char *filename, int cutoff)
{
fprintf(stderr, "Loading weights from %s\n", filename);
FILE *fp = fopen(filename, "r");
if(!fp) file_error(filename);
fread(&net->learning_rate, sizeof(float), 1, fp);
fread(&net->momentum, sizeof(float), 1, fp);
fread(&net->decay, sizeof(float), 1, fp);
fread(&net->seen, sizeof(int), 1, fp);
fprintf(stderr, "%f %f %f %d\n", net->learning_rate, net->momentum, net->decay, net->seen);
int i;
for(i = 0; i < net->n && i < cutoff; ++i){
if(net->types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *) net->layers[i];
int num = layer.n*layer.c*layer.size*layer.size;
fread(layer.biases, sizeof(float), layer.n, fp);
fread(layer.filters, sizeof(float), num, fp);
#ifdef GPU
if(gpu_index >= 0){
push_convolutional_layer(layer);
}
#endif
}
if(net->types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
int num = layer.n*layer.c*layer.size*layer.size;
fread(layer.biases, sizeof(float), layer.n, fp);
fread(layer.filters, sizeof(float), num, fp);
#ifdef GPU
if(gpu_index >= 0){
push_deconvolutional_layer(layer);
}
#endif
}
if(net->types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net->layers[i];
fread(layer.biases, sizeof(float), layer.outputs, fp);
fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
#ifdef GPU
if(gpu_index >= 0){
push_connected_layer(layer);
}
#endif
}
}
fclose(fp);
}
void load_weights(network *net, char *filename)
{
load_weights_upto(net, filename, net->n);
}
void save_network(network net, char *filename)
{
FILE *fp = fopen(filename, "w");
if(!fp) file_error(filename);
int i;
for(i = 0; i < net.n; ++i)
{
if(net.types[i] == CONVOLUTIONAL)
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
else if(net.types[i] == DECONVOLUTIONAL)
print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
else if(net.types[i] == CONNECTED)
print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
else if(net.types[i] == CROP)
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
else if(net.types[i] == MAXPOOL)
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
else if(net.types[i] == DROPOUT)
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
else if(net.types[i] == NORMALIZATION)
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
else if(net.types[i] == SOFTMAX)
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
else if(net.types[i] == DETECTION)
print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
else if(net.types[i] == COST)
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
}
fclose(fp);
}